Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương 3. Giới hạn. Hàm số liên tục Bài 3.19 trang 80 Toán 11 tập 1 - Cùng khám phá: Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\)...

Bài 3.19 trang 80 Toán 11 tập 1 - Cùng khám phá: Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\)...

Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x \right) = f\left( {{x_0}} \right)\) hoặc \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\). Giải - Bài 3.19 trang 80 SGK Toán 11 tập 1 - Cùng khám phá - Bài tập cuối chương 3. Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\)...

Đề bài :

Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\):

a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{{x^2} - 1}}\,\,\,\,\,\,khi\,\,x > 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{x}{2}\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\) tại \({x_0} = 1\)

b) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{4 - {x^2}}}{{x - 2}}\,\,\,\,khi\,\,x 2\end{array} \right.\) tại \({x_0} = 2\)

Hướng dẫn giải :

Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x \right) = f\left( {{x_0}} \right)\) hoặc \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Khử dạng vô định \(\frac{0}{0}\) bằng cách phân tích đa thức thành nhân tử

Lời giải chi tiết :

a) Tập xác định \(D = \mathbb{R}\)

+ Với \({x_0} = 1 \Rightarrow f\left( 1 \right) = - \frac{1}{2}\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x + 1}} = \frac{{1 - 2}}{{1 + 1}} = - \frac{1}{2}\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} - \frac{x}{2} = - \frac{1}{2}\)

Suy ra, \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\) cùng bằng \( - \frac{1}{2}\). Do đó hàm số liên tục tại \({x_0} = 1\)

b) Tập xác định \(D = \mathbb{R}\)

+ Với \({x_0} = 2 \Rightarrow f\left( 2 \right) = - 3\)

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {1 - 2x} \right) = 1 - 2.2 = - 3\)

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{4 - {x^2}}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} - \left( {x + 2} \right) = - 4\)

Ta có \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) vì \( - 3 \ne 4\) do đó hàm số \(y = f\left( x \right)\) không liên tục tại \({x_0} = 2\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK