Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Chương 3. Căn thức Giải mục 5 trang 55 Toán 9 Cùng khám phá tập 1: “Tốc độ \(v\left( {m/s} \right)\) của một vật thể sau khi rơi được \(h\left( m \right)\) từ một độ cao...

Giải mục 5 trang 55 Toán 9 Cùng khám phá tập 1: “Tốc độ \(v\left( {m/s} \right)\) của một vật thể sau khi rơi được \(h\left( m \right)\) từ một độ cao...

Hướng dẫn cách giải/trả lời HĐ4, LT6, VD3 mục 5 trang 55 SGK Toán 9 tập 1 - Cùng khám phá Bài 1. Căn bậc hai của một số thực không âm. Tính và so sánha)\(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\); b)\(\sqrt {\frac{{25}}{4}} \)và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\)...“Tốc độ \(v\left( {m/s} \right)\) của một vật thể sau khi rơi được \(h\left( m \right)\) từ một độ cao

Câu hỏi:

Hoạt động4

Trả lời câu hỏi Hoạt động 4 trang 55

Tính và so sánh

a) \(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\);

b) \(\sqrt {\frac{{25}}{4}} \) và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\);

Hướng dẫn giải :

Thực hiện phép chia để so sánh.

Lời giải chi tiết :

a) \(\sqrt {\frac{9}{{16}}} = \sqrt {\frac{{{3^2}}}{{{4^2}}}} = \frac{3}{4};\frac{{\sqrt 9 }}{{\sqrt {16} }} = \frac{{\sqrt {{3^2}} }}{{\sqrt {{4^2}} }} = \frac{3}{4}\).

Vậy \(\sqrt {\frac{9}{{16}}} = \frac{{\sqrt 9 }}{{\sqrt {16} }}\).

b) \(\sqrt {\frac{25}{{4}}} = \sqrt {\frac{{{3^2}}}{{{4^2}}}} = \frac{3}{4};\frac{{\sqrt 25 }}{{\sqrt {4} }} = \frac{{\sqrt {{3^2}} }}{{\sqrt {{4^2}} }} = \frac{3}{4}\).

Vậy \(\sqrt {\frac{25}{{4}}} = \frac{{\sqrt 25 }}{{\sqrt {4} }}\).


Câu hỏi:

Luyện tập6

Trả lời câu hỏi Luyện tập 6 trang 55

a) \(\sqrt {\frac{9}{{25}}:\frac{{64}}{{121}}} \);

b) \(\sqrt {\frac{{81}}{{10}}}:\sqrt {4\frac{9}{{10}}} \).

Hướng dẫn giải :

Dựa vào công thức “\(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\)” để giải bài toán.

Lời giải chi tiết :

a) \(\sqrt {\frac{9}{{25}}:\frac{{64}}{{121}}} \)\( = \sqrt {\frac{9}{{25}}} :\sqrt {\frac{{64}}{{121}}} \)\( = \frac{3}{5}:\frac{8}{{11}}\)\( = \frac{3}{5}.\frac{{11}}{8}\)\( = \frac{{33}}{{40}}\).

b) \(\sqrt {\frac{{81}}{{10}}} :\sqrt {4\frac{9}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}} :\sqrt {\frac{{49}}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}:\frac{{49}}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}.\frac{{10}}{{49}}} \)\( = \sqrt {\frac{{81}}{{49}}} \)\( = \frac{9}{7}\).


Câu hỏi:

Vận dụng3

Trả lời câu hỏi Vận dụng 3trang 55

Trả lời câu hỏi nêu trong phần Khởi động bằng cách tính tỉ số của \({v_2}\) và \({v_1}\).

“Tốc độ \(v\left( {m/s} \right)\) của một vật thể sau khi rơi được \(h\left( m \right)\) từ một độ cao được tính bởi công thức \(v = \sqrt {19,6h} \). Gọi \({v_1}\) là tốc độ của vật sau khi rơi được 25 mét và \({v_2}\) là tốc độ của vật sau khi rơi được 100 mét. Hỏi \({v_2}\) gấp bao nhiêu lần \({v_1}\)?”

Hướng dẫn giải :

+ Áp dụng công thức tính \({v_1};{v_2}\).

+ Tính tỉ số của \({v_2}\) và \({v_1}\).

Lời giải chi tiết :

Ta có: \({v_1} = \sqrt {19,6.25} ;{v_2} = \sqrt {19,6.100} \).

Tỉ số của \({v_2}\) và \({v_1}\) là:

\(\frac{{{v_2}}}{{{v_1}}} = \frac{{\sqrt {19,6.100} }}{{\sqrt {19,6.25} }} = \sqrt {\frac{{19,6.100}}{{19,6.25}}} = \sqrt {\frac{{100}}{{25}}} = \sqrt 4 = 2\).

Vậy \({v_2}\) gấp 2 lần \({v_1}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK