Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 7. Tam giác cân Bài 48 trang 83 SBT Toán lớp 7 Cánh diều: Cho tam giác ABC cân tại A có (widehat {BAC} = 120^circ ) Trên cạnh BC lấy các đ...

Bài 48 trang 83 SBT Toán lớp 7 Cánh diều: Cho tam giác ABC cân tại A có (widehat {BAC} = 120^circ ) Trên cạnh BC lấy các đ...

Giải Bài 48 trang 83 sách bài tập toán 7 - Cánh diều - Bài 7: Tam giác cân

Đề bài :

Cho tam giác ABC cân tại A có \(\widehat {BAC} = 120^\circ \) Trên cạnh BC lấy các điểm D, E sao cho BD = BA, CE = CA.

a) Chứng minh các tam giác BAD, CAE, AED là các tam giác cân.

b) Tính số đo mỗi góc của tam giác ADE.

Phương pháp giải :

- BD = BA suy ra tam giác ABD cân tại B.

- CA = CE suy ra tam giác ACE cân tại C.

- Chứng minh: \(\widehat {A{\rm{D}}E} = \widehat {A{\rm{ED}}}\) suy ra tam giác AED cân tại A.

- Tổng ba góc trog một tam giác bằng \({180^o}\) để tính số đo mỗi góc của tam giác ADE.

Lời giải chi tiết :

 image

a) Vì BD = BA (giả thiết) nên tam giác ABD cân tại B.

Suy ra \(\widehat {BAD} = \widehat {BDA}\) (hai góc ở đáy).

Vì CE = CA (giả thiết) nên tam giác ACE cân tại C.

Suy ra \(\widehat {CAE} = \widehat {CEA}\) (hai góc ở đáy).

Vì tam giác ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\)

• Xét ∆ABC có: \(\widehat {BAC} + \widehat {CBA} + \widehat {BCA} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {BAC} = 120^\circ \) (giả thiết), \(\widehat {ABC} = \widehat {ACB}\)

Suy ra \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - 120^\circ }}{2} = 30^\circ \)

• Xét ∆ABD có: \(\widehat {BAD} + \widehat {DBA} + \widehat {BDA} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {BAD} = \widehat {BDA}\), \(\widehat {BAD} = \widehat {BDA}\)

Suy ra \(\widehat {ADB} = \frac{{180^\circ  - \widehat {ABD}}}{2} = \frac{{180^\circ  - 30^\circ }}{2} = 75^\circ \)

• Xét ∆ACE có: \(\widehat {ACE} + \widehat {AEC} + \widehat {CAE} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {CAE} = \widehat {CEA}\),  \(\widehat {CAE} = \widehat {CEA}\)

Suy ra \(\widehat {AEC} = \frac{{180^\circ  - \widehat {ACE}}}{2} = \frac{{180^\circ  - 30^\circ }}{2} = 75^\circ \).

Xét tam giác ADE có \(\widehat {ADE} = \widehat {AED}\) (cùng bằng 75°).

Suy ra tam giác AED cân tại A.

Vậy ∆ABD cân tại B, ∆ACE cân tại C và ∆AED cân tại A.

b) Xét ∆ADE có: \(\widehat {ADE} + \widehat {AED} + \widehat {DAE} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {DAE} = 180^\circ  - \widehat {ADE} - \widehat {AED} = 180^\circ  - 75^\circ  - 75^\circ  = 30^\circ \)

Vậy ∆ADE có \(\widehat {ADE} = \widehat {AED} = 75^\circ ,\widehat {EAD} = 30^\circ .\)

Câu hỏi trên thuộc chương

Bài 7. Tam giác cân

SBT Toán 7 - Cánh diều

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK