Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 12. Tính chất ba đường trung trực của tam giác Bài 90 trang 95 SBT Toán lớp 7 Cánh diều: Cho tam giác ABC cân ở A có (widehat {BAC} = 120^circ ). Đường trung trực của cá...

Bài 90 trang 95 SBT Toán lớp 7 Cánh diều: Cho tam giác ABC cân ở A có (widehat {BAC} = 120^circ ). Đường trung trực của cá...

Giải Bài 90 trang 95 sách bài tập toán 7 - Cánh diều - Bài 12: Tính chất ba đường trung trực của tam giác

Đề bài :

Cho tam giác ABC cân ở A có \(\widehat {BAC} = 120^\circ \). Đường trung trực của các cạnh AB và AC cắt nhau ở I và cắt cạnh BC lần lượt tại D, E (Hình 56).

 image

a) Chứng minh điểm I nằm trên đường trung trực của đoạn thẳng DE.

b) Đường tròn tâm I bán kính IA đi qua những điểm nào?

c) Tính số đo các góc của tam giác IBC.

Phương pháp giải :

- Gọi P và Q lần lượt là giao điểm của hai đường trung trực d, d’ với AC, AB. Chứng minh: DI = EI nên điểm I nằm trên đường trung trực của đoạn thẳng DE.

- Chứng minh: IA = IB = IC

Nên đường tròn tâm I bán kính IA đi qua các điểm A, B, C

- Sử dụng tia phân giác của một góc, hai tam giác bằng nhau và tổng ba góc trong một tam giác để tìm số đo các góc của tam giác IBC.

Lời giải chi tiết :

 image

a) Gọi P và Q lần lượt là giao điểm của hai đường trung trực d, d’ với AC, AB.

•Vì tam giác ABC cân tại A nên AB = AC, \(\hat B = \hat C\).

Vì Q là trung điểm của AB nên AQ = QB = \(\frac{1}{2}\)AB.

Vì P là trung điểm của AC nên AP = PC = \(\frac{1}{2}\)AC.

Mà AB = AC nên AQ = BQ = AP = CP.

• Xét ∆AQI và ∆API có:

\(\widehat {AQI} = \widehat {API}\left( { = 90^\circ } \right)\)

AI là cạnh chung,

AQ = AP (chứng minh trên)

Do đó ∆AQI= ∆API (cạnh huyền – cạnh góc vuông).

Do đó QI = PI (hai cạnh tương ứng).

• Xét ∆BQD và ∆CPE có:

\(\widehat {BQ{\rm{D}}} = \widehat {CPE}\left( { = 90^\circ } \right)\),

\(\hat B = \hat C\) (chứng minh trên),

BQ = CP (chứng minh trên)

Do đó ∆BQD = ∆CPE (cạnh góc vuông – góc nhọn kề).

Suy ra QD = PE (hai cạnh tương ứng).

• Ta có: QI = QD + DI và PI = PE + EI.

Mà QI = PI và QD = PE (chứng minh trên)

Do đó DI = EI nên điểm I nằm trên đường trung trực của đoạn thẳng DE.

Vậy điểm I nằm trên đường trung trực của đoạn thẳng DE.

b) Vì I nằm trên đường trung trực của AB nên IA = IB.

Vì I nằm trên đường trung trực của AC nên IA = IC.

Suy ra IA = IB = IC

Nên đường tròn tâm I bán kính IA đi qua các điểm A, B, C

Vậy đường tròn tâm I bán kính IA đi qua các điểm A, B, C.

c) Vì ∆AQI= ∆API (chứng minh câu a)

Nên \(\widehat {QAI} = \widehat {PAI}\) (hai góc tương ứng)

Do đó AI là tia phân giác của góc BAC và \(\widehat {BAI} = \widehat {CAI} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}.120^\circ  = 60^\circ \)

Xét tam giác ABI có IA = IB (chứng minh câu b) nên tam giác ABI cân tại I.

Lại có \(\widehat {BAI} = 60^\circ \) nên tam giác ABI là tam giác đều.

Do đó IA = IB = AB.

Mà AB = AC, IA = IB = IC nên IA = IB = IC = AB = AC.

Xét ∆BAC và ∆BIC có:

AB = IB (chứng minh trên),

AC = IC (chứng minh trên),

BC là cạnh chung

Do đó ∆BAC = ∆BIC (c.c.c)

Suy ra \(\widehat {ABC} = \widehat {IBC},\widehat {BAC} = \widehat {BIC}\widehat {,ACB} = \widehat {ICB}\)  (các cặp góc tương ứng)

Xét ∆ABC có \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = 180^\circ \) (tổng ba góc của một tam giác).

Mà \(\widehat {BAC} = 120^\circ \) (giả thiết) và \(\widehat {ABC} = \widehat {ACB}\) (do ∆ABCcân tại A).

Suy ra \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - 120^\circ }}{2} = 30^\circ \)

Do đó \(\widehat {IBC} = \widehat {ICB} = 30^\circ ,\widehat {BIC} = 120^\circ \)

Vậy \(\widehat {IBC} = \widehat {ICB} = 30^\circ ,\widehat {BIC} = 120^\circ \).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK