Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 12. Tính chất ba đường trung trực của tam giác Bài 89 trang 94 SBT Toán 7 Cánh diều: Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy...

Bài 89 trang 94 SBT Toán 7 Cánh diều: Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy...

Giải Bài 89 trang 94 sách bài tập toán 7 - Cánh diều - Bài 12: Tính chất ba đường trung trực của tam giác

Đề bài :

Cho góc nhọn xOy và điểm M nằm trong góc xOy. Gọi E, F là hai điểm nằm ngoài góc xOy sao cho Ox là đường trung trực của đoạn thẳng ME, Oy là đường trung trực của đoạn thẳng MF (Hình 55).

 image

Chứng minh:

a) O là giao điểm ba đường trung trực của tam giácEMF.

b) Nếu \(\widehat {xOy} = 30^\circ \) thì \(\widehat {EOF} = 60^\circ \).

Phương pháp giải :

- Gọi O là giao điểm hai đường trung trực của ME và MF chứng minh O là giao điểm ba đường trung trực của tam giác EMF.

- Cho \(\widehat {xOy} = 30^\circ \) chứng minh: \(\widehat {EOM} = 2\widehat {xOM}\) và \(\widehat {MOF} = 2\widehat {MOy}\) từ đó chứng minh

\(\widehat {EOF} = \widehat {EOM} + \widehat {MOF} = 2\widehat {xOM} + 2\widehat {MOy}\)\( = 2\left( {\widehat {xOM} + \widehat {MOy}} \right) = 2\widehat {xOy} = 2.30^\circ  = 60^\circ \)

Lời giải chi tiết :

a) Trong tam giác EMF có O là giao điểm hai đường trung trực của ME và MF nên O là giao điểm ba đường trung trực của tam giác EMF.

Vậy O là giao điểm ba đường trung trực của tam giác FEM.

b)

 image

Gọi H là trung điểm của EM.

Xét ∆OEH và ∆OMH có:

\(\widehat {OHE} = \widehat {OHM}\left( { = 90^\circ } \right)\)

OH là cạnh chung,

EH = MH (do H là trung điểm của EM).

Do đó ∆OEH = ∆OMH (hai cạnh góc vuông).

Suy ra \(\widehat {{\rm{EOH}}} = \widehat {MOH}\) (hai góc tương ứng).

Do đó Ox là tia phân giác của góc EOM nên \(\widehat {{\rm{EOx}}} = \widehat {xOM} = \frac{1}{2}\widehat {{\rm{EOM}}}\)

Hay \(\widehat {EOM} = 2\widehat {xOM}\).

Chứng minh tương tự ta cũng có: \(\widehat {{\rm{FOy}}} = \widehat {MOy} = \frac{1}{2}\widehat {{\rm{MOF}}}\)

Hay\(\widehat {MOF} = 2\widehat {MOy}\)

Ta có: \(\widehat {EOF} = \widehat {EOM} + \widehat {MOF} = 2\widehat {xOM} + 2\widehat {MOy}\)\( = 2\left( {\widehat {xOM} + \widehat {MOy}} \right) = 2\widehat {xOy} = 2.30^\circ  = 60^\circ \)

Vậy nếu \(\widehat {xOy} = 30^\circ \) thì \(\widehat {EOF} = 60^\circ \).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK