Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 12. Tính chất ba đường trung trực của tam giác Bài 87 trang 94 SBT Toán 7 Cánh diều: Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I các...

Bài 87 trang 94 SBT Toán 7 Cánh diều: Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I các...

Giải Bài 87 trang 94 sách bài tập toán 7 - Cánh diều - Bài 12: Tính chất ba đường trung trực của tam giác

Đề bài :

Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.

Phương pháp giải :

Gọi M, N, P lần lượt là hình chiếu của I trên BC, AC, AB.

Khi đó IM = IN = IP.

+) Chứng minh I cách đều ba đỉnh của tam giác ABC.

+) Chứng minh I là trọng tâm của tam giác ABC.

Vậy I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC

Lời giải chi tiết :

 image

Gọi M, N, P lần lượt là hình chiếu của I trên BC, AC, AB.

Khi đó IM = IN = IP.

+) Chứng minh I cách đều ba đỉnh của tam giác ABC.

• Xét ∆AIP và ∆AIN có:

\(\widehat {API} = \widehat {AQI}\) (cùng bằng 90°),

AI là cạnh chung,

IP = IN (chứng minh trên)

Do đó ∆AIP = ∆AIN (cạnh huyền – cạnh góc vuông)

Suy ra AP = AN (hai cạnh tương ứng) và \(\widehat {PAI} = \widehat {NAI}\) (hai góc tương ứng).

Do đó AI là tia phân giác của góc BAC.

Mà \(\widehat {BAC} = 60^\circ \) (do tam giác ABC đều).

Nên \(\widehat {PAI} = \widehat {NAI} = 30^\circ \)

Xét tam giác API vuông tại P có: \(\widehat {PAI} + \widehat {PIA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra \(\widehat {PIA} = 90^\circ  - \widehat {PAI} = 90^\circ  - 30^\circ  = 60^\circ \)

Chứng minh tương tự ta có: \(\widehat {PIB} = 60^\circ \).

Xét ∆PIA và ∆PIB có:

\(\widehat {API} = \widehat {BPI} = 90^\circ \),

PI là cạnh chung,

\(\widehat {PIA} = \widehat {PIB}\) (cùng bằng 60°)

Do đó ∆PIA = ∆PIB (cạnh góc vuông – góc nhọn kề).

Suy ra IA = IB (hai cạnh tương ứng)

• Chứng minh tương tự ta cũng có IB = IC.

Do đó IA = IB = IC nên I cách đều ba đỉnh của tam giác ABC.

+) Chứng minh I là trọng tâm của tam giác ABC.

• Ta có ∆PIA = ∆PIB (chứng minh trên)

Suy ra PA = PB (hai cạnh tương ứng).

Do đó P là trung điểm của AB và điểm P cũng thuộc đường trung trực của AB.

Lại có IA = IB nên điểm I thuộc đường trung trực của AB.

CA = CB (do ∆ABC đều) nên điểm C thuộc đường trung trực của AB.

Do đó ba điểm P, I, C thẳng hàng.

Khi đó CP là đường trung truyến của tam giác ABC.

• Chứng minh tương tự ta cũng có AM, BN là các đường trung tuyến của tam giác ABC.

Mặt khác ba đường thẳng AM, BN, CP đều đi qua điểm I.

Do đó I là trọng tâm tam giác ABC.

Vậy I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK