Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 5. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm Bài 4 trang 158 SBT Toán 11 - Chân trời sáng tạo tập 1: Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm...

Bài 4 trang 158 SBT Toán 11 - Chân trời sáng tạo tập 1: Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm...

Sử dụng kiến thức về số trung bình của mẫu số liệu để tính: Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm. Vận dụng kiến thức giải - Bài 4 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1 - Bài 2. Trung vị và tứ phân vị của mẫu số liệu ghép nhóm. Thầy giáo thống kê lại số lần kéo xà đơn của các học sinh nam khối 11 ở bảng sau: a) Hãy ước lượng số trung bình, mốt và trung vị của mẫu số liệu ghép nhóm trên...Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm

Đề bài :

Thầy giáo thống kê lại số lần kéo xà đơn của các học sinh nam khối 11 ở bảng sau:

image

a) Hãy ước lượng số trung bình, mốt và trung vị của mẫu số liệu ghép nhóm trên.

b) Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm. Thầy giáo nên chọn học sinh có thành tích kéo xà đơn dưới bao nhiêu lần để bồi dưỡng thể lực?

Hướng dẫn giải :

Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:

Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

image

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).

+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu.

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.

b) Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

Lời giải chi tiết :

Ta hiệu chỉnh lại bảng số liệu bao gồm giá trị đại diện:

image

Cỡ mẫu \(n = 143\)

Số trung bình của mẫu số liệu là: \(\overline x = \frac{{8.35 + 13.54 + 18.32 + 23.17 + 28.5}}{{143}} = \frac{{2\;089}}{{143}}\)

Nhóm chứa mốt của mẫu số liệu là \(\left[ {10,5;15,5} \right)\).

Do đó, \({u_m} = 10,5,{u_{m + 1}} = 15,5,{n_m} = 54,{n_{m - 1}} = 35,{n_{m + 1}} = 32,{u_{m + 1}} - {u_m} = 15,5 - 10,5 = 5\)

Mốt của mẫu số liệu là: \({M_O} = 10,5 + \frac{{54 - 35}}{{\left( {54 - 35} \right) + \left( {54 - 32} \right)}}.5 = \frac{{1051}}{{82}}\).

Gọi \({x_1},{x_2},...,{x_{143}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{35}} \in \left[ {5,5;10,5} \right),{x_{36}},...,{x_{89}} \in \left[ {10,5;15,5} \right),{x_{90}},...,{x_{121}} \in \left[ {15,5;20,5} \right),\)\({x_{122}},...,{x_{138}} \in \left[ {20,5;25,5} \right),{x_{139}},...,{x_{143}} \in \left[ {25,5;30,5} \right)\)

Do cỡ mẫu \(n = 143\) nên trung vị \({M_e} = {x_{72}} \in \left[ {10,5;15,5} \right)\) nên trung vị của mẫu số liệu là:

\({M_e} = 10,5 + \frac{{\frac{{143}}{2} - 35}}{{54}}.\left( {15,5 - 10,5} \right) = \frac{{1499}}{{108}}\)

b) Do cỡ mẫu \(n = 143\) nên tứ phân vị thứ nhất của mẫu số liệu là \({x_{36}}\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {10,5;15,5} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 10,5 + \frac{{\frac{{143}}{4} - \left( {35 + 0} \right)}}{{54}}.\left( {15,5 - 10,5} \right) = \frac{{761}}{{72}} \approx 10,57\)

Vậy giáo viên nên chọn các bạn có thành tích kéo xà dưới 11 lần để bồi dưỡng thể lực thêm.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK