Trả lời câu hỏi Hoạt động 1 trang 37
Cho trục số được vẽ trên lưới ô vuông đơn vị như Hình 1.
a) Tính độ dài cạnh huyền OB của tam giác vuông OAB.
b) Vẽ đường tròn tâm O bán kính OB, đường tròn này cắt trục số tại hai điểm P và Q.
Gọi x là số thực được biểu diễn bởi điểm P, y là số thực được biểu diễn bởi điểm Q.
Thay mỗi ? bằng số thích hợp để có các đẳng thức:
x2 = ?, y2 = ?.
Dựa vào định lý Pythagore trong tam giác OAB là OB2 = OA2 + AB2 để tìm OB.
a) Áp dụng định lí Pythagore vào tam giác vuông OAB ta có:
OB = \(\sqrt {1 + {2^2}} = \sqrt 5 \)
b) Vì P, Q là hai điểm thuộc đường tròn tâm O bán kính OB nên \(OP = OQ = OB = \sqrt 5 \)
Vì x là số thực được biểu diễn bởi điểm P nên \(x = \sqrt 5 \),
y là số thực được biểu diễn bởi điểm Q nên \(y = -\sqrt 5 \).
Khi đó ta có các đẳng thức:
\({x^2} = {\left( {\sqrt 5 } \right)^2} = 5\)
\({y^2} = {\left( {-\sqrt 5 } \right)^2} = 5\)
Trả lời câu hỏi Thực hành 1 trang 38
Tính các căn bậc hai của mỗi số sau:
a) 36
b) \(\frac{4}{{49}}\)
c) 1,44
d) 0
Dựa vào VD1 trang 38 và làm tương tự.
a) Ta có 62 = 36, nên 36 có hai căn bậc hai là 6 và – 6
b) Ta có \({\left( {\frac{2}{7}} \right)^2}\)= \(\frac{4}{{49}}\), nên \(\frac{4}{{49}}\) có hai căn bậc hai là \(\frac{2}{7}\) và - \(\frac{2}{7}\)
c) Ta có (1,2)2 = 1,44 nên 1,44 có hai căn bậc hai là 1,2 và – 1,2
d) Số 0 chỉ có một căn bậc hai là chính nó \(\sqrt 0 = 0\)
Trả lời câu hỏi Thực hành 2 trang 38
Sử dụng dấu căn bậc hai để viết các căn bậc hai của mỗi số:
a) 11
b) 2,5
c) – 0,09
Dựa vào VD2 trang 38 làm tương tự.
a) Các căn bậc hai của 11 là \(\sqrt {11} \) và - \(\sqrt {11} \)
b) Các căn bậc hai của 2,5 là \(\sqrt {2,5} \) và - \(\sqrt {2,5} \)
c) Do – 0,09 là số âm nên nó không có căn bậc hai.
Trả lời câu hỏi Thực hành 3 trang 38
Tính
a) \(\sqrt {1600} \)
b) \(\sqrt {0,81} \)
c) \(\sqrt {\frac{9}{{25}}} \)
Dựa vào VD3 trang 38 và làm tương tự.
a) \(\sqrt {1600} = \sqrt {{{40}^2}} = 40\)
b) \(\sqrt {0,81} = \sqrt {{{(0,9)}^2}} = 0,9\)
c) \(\sqrt {\frac{9}{{25}}} = \sqrt {{{\left( {\frac{3}{5}} \right)}^2}} = \frac{3}{5}\)
Trả lời câu hỏi Thực hành 4 trang 39
Tính giá trị của các biểu thức:
a) \({\left( {\sqrt {12} } \right)^2}\)
b) \({\left( { - \sqrt {0,36} } \right)^2}\)
c) \({\left( {\sqrt 5 } \right)^2} + {\left( { - \sqrt {1,21} } \right)^2}\)
Dựa vào VD4 trang 38 và làm tương tự.
a) \({\left( {\sqrt {12} } \right)^2} = 12\)
b) \({\left( { - \sqrt {0,36} } \right)^2} = 0,36\)
c) \({\left( {\sqrt 5 } \right)^2} + {\left( { - \sqrt {1,21} } \right)^2} = 5 + 1,21 = 6,21\)
Trả lời câu hỏi Vận dụng 1 trang 39
Biết rằng hình A và hình vuông B trong Hình 2 có diện tích bằng nhau. Tính độ dài cạnh x của hình vuông B.
Tính diện tích hình vuông to trừ đi diện tích hình vuông nhỏ tìm được diện tích hình A.
Từ diện tích hình A suy ra diện tích hình B rồi ta tìm x.
Xét hình A:
Ta có diện tích cả hình vuông cạnh 3cm là : 3.3 = 9 cm2
Ta có diện tích cả hình vuông cạnh \(\sqrt 2 \) cm là : \(\sqrt 2 \). \(\sqrt 2 \) = 2 cm2
Suy ra diện tích hình A là: 9 – 2 = 7 cm2
Mà hình vuông B bằng diện tích hình A là 7 cm2
Nên x.x = x2 = 7 suy ra x = \(\sqrt 7 \) cm.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK