Cho tam giác ABC cân tại A \(\left( {\widehat A < {{90}^0}} \right)\), các đường cao BD và CE cắt nhau tại H. Tia phân giác của góc ABD cắt EC và AC lần lượt tại M và P. Tia phân giác của góc ACE cắt BD và AB lần lượt tại Q và N. Chứng minh rằng:
a) \(\widehat {ABD} = \widehat {ACE}\);
b) \(BH = CH;\)
c) Tam giác BOC vuông cân;
d) MNPQ là hình vuông.
a) Sử dụng tính chất của hai góc phụ nhau để chứng minh.
b) Sử dụng kiến thức về tính chất tam giác cân để chứng minh: Tam giác cân có hai cạnh bên bằng nhau.
d) Sử dụng kiến thức về dấu hiệu nhận biết hình vuông để chứng minh: Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.
a) Tam giác ABD vuông tại D nên \(\widehat {ABD} + \widehat A = {90^0}\)
Tam giác ACE vuông tại E nên \(\widehat {ACE} + \widehat A = {90^0}\)
Do đó, \(\widehat {ABD} = \widehat {ACE}\)
b) Tam giác ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\)
mà \(\widehat {ABD} = \widehat {ACE}\) nên \(\widehat {ABC} - \widehat {ABD} = \widehat {ACB} - \widehat {ACE}\)
Do đó, \(\widehat {HBC} = \widehat {HCB}\). Suy ra, tam giác HBC cân tại H. Do đó, \(BH = CH\)
c) Không có dữ kiện của điểm O trong đề bài
d) Gọi O là giao điểm của CN và BP.
Vì BO là tia phân giác của góc ABD nên \(\widehat {{B_1}} = \widehat {{B_2}} = \frac{1}{2}\widehat {ABD}\)
Vì CO là tia phân giác của góc ACE nên \(\widehat {{C_2}} = \frac{1}{2}\widehat {ACE}\)
Mà \(\widehat {ABD} = \widehat {ACE}\) (cmt) nên \(\widehat {{B_2}} = \widehat {{C_2}}\).
Do đó, \(\widehat {{B_2}} + \widehat {{B_3}} = \widehat {{C_2}} + \widehat {{C_3}}\) hay \(\widehat {OBC} = \widehat {OCB}\). Suy ra, tam giác BOC cân tại O. Do đó, \(OB = OC\)
Ta có: \(\widehat {{B_1}} = \widehat {{C_2}}\left( { = \widehat {{B_2}}} \right)\) nên ta có:
\(\widehat {{B_3}} + \widehat {{B_2}} + \widehat {{C_2}} + \widehat {{C_3}} = \widehat {{B_3}} + \widehat {{B_2}} + \widehat {{B_1}} + \widehat {{C_3}} = {180^0} - \widehat {BEC} = {90^0}\)
Do đó, \(\widehat {BOC} = {90^0}\) nên \(BO \bot NQ\)
Tam giác BMH và tam giác CQH có:
\(\widehat {{B_2}} = \widehat {{C_2}}\) (cmt), \(BH = CH\) (cmt), \(\widehat {BHM} = \widehat {CHQ}\) (hai góc đối đỉnh). Do đó, \(\Delta BMH = \Delta CQH\left( {g - c - g} \right)\). Suy ra: \(BM = CQ\)
Do đó, \(OB - BM = OC - QC\) nên \(OM = OQ\) (1)
Tam giác BNQ có BO là đường cao đồng thời phân giác đồng thời là đường cao nên tam giác BNQ cân tại B.
Suy ra, BO là đường trung tuyến nên \(ON = OQ\) (2)
Chứng minh tương tự ta có: \(OM = OP\) (3)
Từ (1), (2) và (3) ta có: \(OM = OQ = OP = ON\)
Do đó, \(ON + OQ = OM + OP\) hay \(NQ = MP\)
Tứ giác MNPQ có: \(OM = OP;OQ = ON\) nên MNPQ là hình bình hành, mà \(NQ = MP\) nên MNPQ là hình chữ nhật. Lại có: \(MP \bot NQ\) nên MNPQ là hình vuông.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK