Trang chủ Lớp 8 SBT Toán 8 - Chân trời sáng tạo Chương 3. Định lí Pythagore. Các loại tứ giác thường gặp Bài 3 trang 71 SBT Toán 8 - Chân trời sáng tạo: Cho tam giác ABC vuông tại A, \(AB = 4cm, AC = 8cm. \) Gọi E là trung điểm của AC...

Bài 3 trang 71 SBT Toán 8 - Chân trời sáng tạo: Cho tam giác ABC vuông tại A, \(AB = 4cm, AC = 8cm. \) Gọi E là trung điểm của AC...

Sử dụng kiến thức: Trong một tam giác, đường thẳng đi qua trung điểm hai cạnh thì song song và bằng \(\frac{1}{2}\) cạnh còn lại. Phân tích và giải bài 3 trang 71 sách bài tập toán 8 - Chân trời sáng tạo - Bài 5. Hình chữ nhật - Hình vuông. Cho tam giác ABC vuông tại A, \(AB = 4cm, AC = 8cm. \) Gọi E là trung điểm của AC,...

Đề bài :

Cho tam giác ABC vuông tại A, \(AB = 4cm,AC = 8cm.\) Gọi E là trung điểm của AC, M là trung điểm của BC.

a) Tính EM.

b) Vẽ tia Bx song song với AC sao cho Bx cắt EM tại D. Chứng minh tứ giác ABDE là hình vuông.

c) Gọi I là giao điểm của BE và AD, K là giao điểm của BE và AM. Chứng minh tứ giác BDCE là hình bình hành và \(DC = 6KI\).

Hướng dẫn giải :

a) Sử dụng kiến thức: Trong một tam giác, đường thẳng đi qua trung điểm hai cạnh thì song song và bằng \(\frac{1}{2}\) cạnh còn lại.

b) Sử dụng kiến thức về dấu hiệu nhận biết hình vuông để chứng minh: Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

c) + Sử dụng kiến thức về tính chất hình vuông để chứng minh: Hình vuông có bốn cạnh bằng nhau.

+ Sử dụng kiến thức về dấu hiệu nhận biết hình bình hành để chứng minh: Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.

Lời giải chi tiết :

Xét bài toán phụ: Cho tam giác ABC có M, N lần lượt là trung điểm của cạnh AB, AC. Lấy P đối xứng với M qua N. Chứng minh rằng MN//BC, \(MN = \frac{{BC}}{2}\)

Chứng minh:

image

Tam giác AMN và tam giác CPN có:

\(NA = NC\left( {gt} \right),\widehat {{N_1}} = \widehat {{N_2}}\) (hai góc đối đỉnh), \(NM = NP\) (gt)

Do đó, \(\Delta ANM = \Delta CNP\left( {c - g - c} \right)\)

Suy ra \(\widehat {{A_1}} = \widehat {{C_1}}\), mà hai góc này ở vị trí so le trong nên CP//AB hay CP//BM

Lại có: \(CP = AM = BM\)

Tứ giác BMPC có: CP//BM, \(CP = BM\) nên tứ giác BMPC là hình bình hành. Do đó, MN//BC, \(MN = \frac{{BC}}{2}\).

Giải bài 3:

image

a) Tam giác ABC có E là trung điểm của AC, M là trung điểm của BC nên theo bài toán phụ ta có: \(ME = \frac{1}{2}AB = \frac{1}{2}.4 = 2\left( {cm} \right)\)

b) Tam giác ABC có E là trung điểm của AC, M là trung điểm của BC nên theo bài toán phụ ta có: ME//AB hay DE//AB

Tứ giác ABDE có: DE//AB (cmt), BD//EA (gt) nên tứ giác ABDE là hình bình hành.

Lại có: \(\widehat {BAE} = {90^0}\) nên ABDE là hình chữ nhật.

Vì: \(AE = \frac{1}{2}AC = 4cm = AB\) nên ABDE là hình vuông.

c) Vì E là trung điểm của AC nên \(EC = AE\), mà \(AE = BD\) (do ABDE là hình vuông), suy ra: \(EC = BD\)

Tứ giác BDCE có: \(EC = BD\) (cmt), EC//BD (gt) nên tứ giác BDCE là hình bình hành.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK