Quan sát Hình 8.28, trả lời các câu hỏi:
a) Bốn cánh cửa kính 1, 2, 3, 4 (Hình 8.28) chia không gian thành bao nhiêu phần?
b) Bạn An (nữ, áo vàng) và bạn Bình (nam, áo xanh) ở phần không gian nào?
Quan sát hình ảnh.
a) Bốn cánh cửa kính chia không gian thành 4 phần.
b) Bạn An ở phần không gian chứa cánh cửa số 1 và 4, Bình ở phần không gian chứa cánh cửa số 1 và 2.
Cho nhị diện \(\left[ {\alpha ,a,\beta } \right]\) và điểm O thuộc a. Vẽ mặt phẳng (P) qua O và vuông góc a. Gọi giao tuyển của (P) với các nửa mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) lần lượt là các tia Ox, Oy. Hỏi số đo góc xOy thay đổi như thế nào khi điểm O thay đổi trên a?
Quan sát hình vẽ.
Số đo góc xOy không thay đổi khi điểm O thay đổi trên A.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{\sqrt 2 }}{2}a\). Tính số đo của các góc nhị diện \(\left[ {S,BD,A} \right]\), \(\left[ {S,BD,C} \right]\).
Cách tìm số đo của góc nhị diện \(\left[ {S,CD,A} \right]\):
+ Tìm giao tuyến d của (SCD) và (ACD).
+ Tìm \(a \subset \left( {SCD} \right)\) vuông góc với d. Tìm \(b \subset \left( {ACD} \right)\) vuông góc với d.
+ Tính \(\left( {a,b} \right)\).
SA vuông góc với BD (Vì SA vuông góc với (ABCD))
AC vuông với BD (Vì ABCD là hình vuông)
Nên (SAC) vuông với BD
Trong (ABCD), gọi O là giao điểm của AC và BD
Suy ra SO vuông góc với BD
Mà: AO vuông góc với BD
Suy ra góc phẳng nhị diện \(\left[ {S,BD,A} \right]\) là góc SOA
ABCD là hình vuông cạnh a nên AC bằng \(\sqrt 2 a\). Suy ra AO = \(\frac{{\sqrt 2 }}{2}a\)
\(\tan \widehat {SOA} = \,\frac{{SA}}{{AO}} = \frac{{\frac{{\sqrt 2 }}{2}a}}{{\frac{{\sqrt 2 }}{2}a}} = 1 \Rightarrow \widehat {SOA} = {45^0}\)
Ta có: SO vuông góc với BD, CO vuông góc với BD nên góc phẳng nhị diện \(\left[ {S,BD,C} \right]\) là góc SOC
\(\widehat {SOC} = {180^0} - {45^0} = {135^0}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK