Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc mặt đáy và \(SA = \sqrt 2 .a\).Tính số đo góc giữa SC và (SAB)
Chứng minh \(BC \bot \left( {SAB} \right)\) từ đó suy ra \(SB\) là hình chiếu của \(SC\) trên \(\left( {SAB} \right)\)
Từ đó xác định góc cần tìm là góc \(\widehat {BSC}\)
Sử dụng Định lý Pi – ta – go để tính cạnh \(SB\) trong \(\Delta SAB\) vuông tại \(A\)
Sử dụng \(\tan \alpha \) để tính góc \(\widehat {BSC}\) trong tam giác \(SBC\) vuông tại \(B\)
Ta có \(SA \bot BC\) vì \(SA \bot \left( {ABCD} \right)\)
Vì \(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\)
Suy ra \(SB\) là hình chiếu vuông góc của \(SC\) trên \(\left( {SAB} \right)\)
Vậy góc giữa \(SC\) và \(\left( {SAB} \right)\) là góc giữa \(SC\) và \(SB\)
Vậy góc đó là góc \(\widehat {BSC}\)
Xét \(\Delta SAB\) vuông tại \(A\) có \(SA = a\sqrt 2 ,AB = a \Rightarrow SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)
Xét \(\Delta SBC\) vuông tại \(B\) có \(\tan \widehat {BSC} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {BSC} = {30^o}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK