Trong mặt phẳng \(\left( \alpha \right)\), vẽ một hình vuông ABCD, gọi O là giao điểm của AC và BD.
- Qua O, vẽ dường thẳng a vuông góc với \(\left( \alpha \right)\).
- Trên đường thẳng a lấy điểm S khác O. So sánh độ dài các đoạn thẳng SA, SB, SC, SD và rút ra nhận xét về hình dạng các mặt bên của hình chóp S.ABCD.
Chứng minh tam giác SAC, SBD cân tại S và SA = SB.
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AC,SO \bot BD\)
O là giao điểm AC và BD của hình vuông ABCD nên O là trung điểm của AC, BD
Suy ra tam giác SAC cân tại S, tam giác SBD cân tại S
Nên SA = SC, SB = SD
Ta có: \(SA = \sqrt {A{O^2} + S{O^2}} ,SB = \sqrt {B{O^2} + S{O^2}} \)
ABCD là hình vuông nên AO = BO
Suy ra SA = SB = SC = SD.
Cho hình chóp lục giác đều S.ABCDEF có cạnh bên bằng 2a và cạnh đáy bằng a (Hình 8,43). Gọi O là tâm của đáy. Tính SO.
Đáy là hình lục giác nên AO = a. Áp dụng định lý Py-ta-go để tính SO.
ABCDEF là lục giác đều nên AO = a
Xét tam giác SAO vuông tại O có:
\(SO = \sqrt {S{A^2} + A{O^2}} = \sqrt {{a^2} + {a^2}} = \sqrt 2 a\)
Cho hình chóp tam giác đều S.ABC. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh SA, SB, SC (Hình 8,44).
a) Mặt phẳng (A’B’C’) có song song với mặt phẳng (ABC) không? Vì sao?
b) Tam giác A’B’C’ có phải là tam giác đều không? Vì sao?
c) Các tứ giác ABB’A’, BCC’B’, ACC’A’ có hình dạng đặc biệt gì?
a) Nếu mặt phẳng (P) chứa đường thẳng a, b cắt nhau và cùng song song với (Q) thì (P) song song với (Q).
b) Đường trung bình của tam giác song song với cạnh thứ ba và bằng một nửa cạnh đó.
c) Hình thang là tứ giác có 2 cạnh đáy song song với nhau.
a) A’, B’ là trung điểm của SA, SB nên A’B’ song song với AB
A’, C’ là trung điểm của SA, SC nên A’C’ song song với AC
(A’B’C’) song song với (ABC) vì A’B’ song song với AB, A’C’ song song với AC.
b) A’, B’ là trung điểm của SA, SB nên A’B’ = \(\frac{1}{2}\)AB
A’, C’ là trung điểm của SA, SC nên A’C’ = \(\frac{1}{2}\)AC
B’, C’ là trung điểm của SB, SC nên B’C’ = \(\frac{1}{2}\)BC
Mà AB = AC = CA nên A’B’ = A’C’ = C’A’
Vậy A’B’C’ là tam giác đều.
c) ABB’A’ là hình thang vì AB song song với A’B’
BCC’B’ là hình thang vì BC song song với B’C’
ACC’A’ là hình thang vì AC song song với A’C’.
Cho hình chóp cụt tứ giác đều ABCD.AB’C’D’ có cạnh đáy lớn bằng 3a, cạnh đáy nhỏ bằng a, cạnh bên bằng 2a. Tính chiều cao của hình chóp cụt đều này.
Kẻ C’H, D’G vuông góc với CD. Suy ra C’H song song với D’G. Tính CH và áp dụng định lý Py-ta-go để tính C’H.
Kẻ D’H, C’G vuông góc với CD. Suy ra D’H song song với C’G
Mà C’D’ song song với CD
Suy ra D’C’GH là hình chữ nhật
\( \Rightarrow HG = C’G’ = a\)
\( \Rightarrow DH + GC = 2a \Rightarrow DH = GC = a\)
Xét tam giác D’HD vuông tại H có:
\(D’H = \sqrt {DD{‘^2} - D{H^2}} = \sqrt {{{\left( {2a} \right)}^2} - {a^2}} = \sqrt 3 a\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK