Cho dãy số (\({u_n}\)) được xác định bởi \({u_n} = \frac{1}{n}\)
a, Tính giá trị của \({u_1},{u_2},{u_3},{u_4},{u_{10}}\)và biểu diễn chúng trên trục số thực dưới đây:
b, Khi n tăng thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào ? Điều đó thể hiện thế nào trên trục số.
c, Bắt đầu từ số hạng thứ mấy thì khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,01? Câu hỏi tương tự với 0,001; 0,00001.
a, Lần lượt thay giá trị n=1, n= 2, n=3, n=4, n= 10 vào công thức \({u_n} = \frac{1}{n}\) để được các giá trị tương ứng \({u_1},{u_2},{u_3},{u_4},{u_{10}}\).
b, Khoảng cách giữa \({u_n}\) và 0 là giá trị của \({u_n}\).
Khi n tăng thì giá trị \(\frac{1}{n}\) càng nhỏ, khoảng cách giữa \({u_n}\) và 0 càng gần nhau hơn.
Trên trục số, các giá trị n càng lớn thì khoảng cách giữa \({u_n}\) và 0 càng nhỏ.
c, 0,01=\(\frac{1}{{100}}\)= \({u_{100}}\). Với các giá trị n > 100 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.
a, Ta có: \({u_1} = \frac{1}{1} = 1\), \({u_2} = \frac{1}{2}\), \({u_3} = \frac{1}{3}\), \({u_4} = \frac{1}{4}\), \({u_{10}} = \frac{1}{{10}}\).
Biểu diễn trên trục số:
b, Khi n tăng thì \(\frac{1}{n}\) càng nhỏ do đó, khoảng cách giữa \({u_n}\) và 0 càng nhỏ khi n tăng.
c, Ta có : 0,01=\(\frac{1}{{100}}\)= \({u_{100}}\). Với các giá trị n > 100 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01. Vậy bắt đầu từ số hạng thứ 101 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,01.
Tương tự:
0,001= \(\frac{1}{{1000}}\)=\({u_{1000}}\)
Vậy bắt đầu từ số hạng 1001 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,001.
0,00001=\(\frac{1}{{100000}} = {u_{100000}}\).
Vậy bắt đầu từ số hạng 100001 thì khoảng cách \({u_n}\) đến 0 nhỏ hơn 0,00001.
Cho dãy số (\({u_n}\)) với \({u_n} = {(\frac{1}{2})^n}\)
a, Viết năm số hạng đầu tiên của dãy số đã cho.
b, Khi giá trị n càng lớn thì khoảng cách giữa \({u_n}\) và 0 thay đổi thế nào?
a, Thay các giá trị n = 1, n = 2, n = 3, n = 4, n = 5 vào công thức \({u_n} = {(\frac{1}{2})^n}\) để được năm số hạng đầu tiên của dãy.
\({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\); \({u_2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\); \({u_3} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\); \({u_4} = {\left( {\frac{1}{2}} \right)^4} = \frac{1}{{16}}\); \({u_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)
b, Khi n càng tăng thì giá trị \({u_n}\) càng nhỏ. Do đó, khoảng cách \({u_n}\) và 0 càng nhỏ.
a, Ta có :
\({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\); \({u_2} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\); \({u_3} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\); \({u_4} = {\left( {\frac{1}{2}} \right)^4} = \frac{1}{{16}}\); \({u_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)
Vậy năm số hạng đầu tiên của dãy số là: \(\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}};\frac{1}{{32}}\).
b, Khi n càng tăng thì khoảng cách \({u_n}\) và 0 càng nhỏ.
Cho dãy số (\({u_n}\)) với \({u_n}\)=\(\frac{{3n + 1}}{n}\). Xét dãy số (\({v_n}\)) với \({v_n} = {u_n} - 3\). Viết công thức tính số hạng tổng quát \({v_n}\)và \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\).
Thay \({u_n}\)=\(\frac{{3n + 1}}{n}\) vào công thức \({v_n} = {u_n} - 3\) để được số hạng tổng quát của \({v_n}\).
Sử dụng phần lưu ý mục 1 là \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0\) để tính \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\).
Ta có: \({v_n} = {u_n} - 3\)= \(\frac{{3n + 1}}{n} - 3 = \frac{{3n + 1 - 3n}}{n} = \frac{1}{n}\).
Khi đó, \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\)=\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0\).
Chứng minh rằng: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{1 - 4{n^2}}}{{{n^2}}} = - 4\).
Ta có: \(\mathop {\lim }\limits_{n \to + \infty } \left[ {\frac{{1 - 4{n^2}}}{{{n^2}}} - ( - 4)} \right] = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} = 0\)
Ta có:
\(\mathop {\lim }\limits_{n \to + \infty } \left[ {\frac{{1 - 4{n^2}}}{{{n^2}}} - ( - 4)} \right]\)
=\(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{1 - 4{n^2}}}{{{n^2}}} + 4} \right)\)
=\(\mathop {\lim }\limits_{n \to + \infty } (\frac{{1 - 4{n^2} + 4{n^2}}}{{{n^2}}})\)
\(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} = 0\)
Vậy \(\mathop {\lim }\limits_{n \to + \infty } \frac{{1 - 4{n^2}}}{{{n^2}}} = - 4\).
a, Chứng minh rằng \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}} = 6\)
b, So sánh \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}}\) và \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\).
a, Tính \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{6{n^3} + 1}}{{{n^3}}} - 6) = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}} = 0\).
b, Tính \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\) và sử dụng kết quả câu a để so sánh.
a, Ta có: \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{6{n^3} + 1}}{{{n^3}}} - 6)\)
= \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{{6{n^3} + 1 - 6{n^3}}}{{{n^3}}}} \right)\)
= \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}} = 0\).
Vậy \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}} = 6\).
b, Ta có: \(\mathop {\lim }\limits_{n \to + \infty } 6 = 6\) và \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}} = 0\)
Do đó: \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\)= 6
Vậy: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{6{n^3} + 1}}{{{n^3}}}\) = \((\mathop {\lim }\limits_{n \to + \infty } 6 + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^3}}})\).
Tìm \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) và \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)
Tính \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) chia cả tử và mẫu cho \({n^3}\)
Tính \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\) chia cả tử và mẫu cho \({6^n}\).
Ta có: \(\frac{{6 - 7{n^2}}}{{2{n^3} + 9}} = \frac{{6.\frac{1}{{{n^3}}} - 7.\frac{1}{n}}}{{2 + 9.\frac{1}{{{n^3}}}}}\)
Vì lim 6=6, lim 7=7, lim 2= 2, lim 9=9, \(\lim \frac{1}{{{n^3}}} = 0\), \(\lim \frac{1}{n} = 0\) nên:
\(\lim (6.\frac{1}{{{n^3}}} - 7.\frac{1}{n}) = 6.0 + 7.0 = 0\) và \(\lim (2 + 9.\frac{1}{{{n^3}}}) = 2 + 9.0 = 2\)
Vậy \(\lim \frac{{6 - 7{n^2}}}{{2{n^3} + 9}}\) \( = 0\).
Ta có: \(\frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\) = \(\frac{{{{(\frac{5}{6})}^n} + 2}}{{1 + {{(\frac{4}{6})}^n}}} = \frac{{{{(\frac{5}{6})}^n} + 2}}{{1 + {{(\frac{2}{3})}^n}}}\)
Vì \(\lim {(\frac{5}{6})^n} = 0\); \(\lim {(\frac{2}{3})^n} = 0\); \(\lim 2 = 2\); \(\lim 1 = 1\) nên :
\(\lim \left[ {{{(\frac{5}{6})}^n} + 2} \right] = 2\)và \(\lim \left[ {1 + {{\left( {\frac{2}{3}} \right)}^n}} \right] = 1\)
Vậy \(\lim \frac{{{5^n} + {{2.6}^n}}}{{{6^n} + {4^n}}}\)= 2.
1.Chứng minh rằng dãy số (\({u_n}\)) và (\({v_n}\)) với công thức tính số hạng tổng quát lần lượt là \({u_n} = {(\frac{1}{2})^n}\) và \({v_n} = 2.{(\frac{{ - 2}}{3})^n}\) là cấp số nhân mà công bội của chúng có giá trị tuyệt đối nhỏ hơn 1.
2.Cho cấp số nhân (\({u_n}\)) có công bội q. ( \(\left| q \right|
a, Viết công thức tính tổng \({S_n}\) của n số hạng đầu tiên của (\({u_n}\)) theo \({u_1}\) và q.
b, Nếu quy ước S=\({u_1} + {u_2} + ... + {u_n} + ... = \lim {S_n}\), hãy tính S theo \({u_1}\) và q.
1.Tìm công bội q của dãy số (\({u_n}\)) và (\({v_n}\)) để chứng minh là cấp số nhân
2. a, Viết công thức tính \({S_n}\) của cấp số nhân \({S_n} = \frac{{{u_{1.}}.(1 - {q^n})}}{{1 - q}}\)
b, Dựa vào lim\({q^n} = 0\), tính lim \({S_n}\).
1.Chứng minh dãy số (\({u_n}\)) là cấp số nhân
Ta có: \({u_{n + 1}} = {(\frac{1}{2})^{n + 1}}\) ; \({u_n} = {(\frac{1}{2})^n}\)
\( \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{(\frac{1}{2})}^{n + 1}}}}{{{{(\frac{1}{2})}^n}}} = \frac{1}{2}\)
Vậy dãy số (\({u_n}\)) là cấp số nhân với công bội q=\(\frac{1}{2}\).
Chứng minh dãy số (\({v_n}\)) là cấp số nhân
Ta có: \({v_{n + 1}} = 2.{(\frac{{ - 2}}{3})^{n + 1}}\); \({v_n} = 2.{(\frac{{ - 2}}{3})^n}\)
\( \Rightarrow \frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{{2.{{(\frac{{ - 2}}{3})}^{n + 1}}}}{{2.{{(\frac{{ - 2}}{3})}^n}}} = \frac{{ - 2}}{3}\)
Vậy dãy số (\({v_n}\)) là cấp số nhân với công bội \(q = \frac{{ - 2}}{3}\).
2. a, Tổng \({S_n}\) của n số hạng đầu tiên của (\({u_n}\)) theo \({u_1}\) và q là: \({S_n} = \frac{{{u_{1.}}.(1 - {q^n})}}{{1 - q}}\)
b, S=\({u_1} + {u_2} + ... + {u_n} + ... = \lim {S_n}\)= \(\lim \frac{{{u_1}.(1 - {q^n})}}{{1 - q}}\)
Ta có lim \({q^n} = 0\)( với \(\left| q \right|
lim\({S_n} = \)\(\frac{{1.{u_1}}}{{1 - q}} = \frac{{{u_1}}}{{1 - q}}\).
Tính tổng cấp số nhân lùi vô hạn S= \(1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}} + ...\)
S là tổng của cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{2}\) và \({u_1} = 1\) .Áp dụng công thức S=\(\frac{{{u_1}}}{{1 - q}}\) để tính tổng.
Ta có S là tổng của cấp số nhân lùi vô hạn với công bội \(q = \frac{1}{2}\) và \({u_1} = 1\).
S=\(\frac{{{u_1}}}{{1 - q}}\)=\(\frac{1}{{1 - \frac{1}{2}}} = \frac{1}{{\frac{1}{2}}} = 2\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK