Cho dãy số \(\left( {{x_n}} \right)\) với \({x_n} = 1 + \frac{1}{n}\). Xét hàm số \(f(x) = {x^2} - 2x\)
a, Tính \(f({x_n})\) theo n.
b, Tìm \(\lim {x_n}\) và \(\lim f\left( {{x_n}} \right)\).
a, Thay giá trị của \({x_n}\) vào f(x).
b, Áp dụng giới hạn của dãy số để tính \(\lim {x_n}\) và \(\lim f\left( {{x_n}} \right)\).
a, Thay \({x_n} = 1 + \frac{1}{n}\) vào hàm số \(f(x) = {x^2} - 2x\) ta được:
\(f({x_n}) = {\left( {1 + \frac{1}{n}} \right)^2} - 2.(1 + \frac{1}{n}) = 1 + \frac{2}{n} + \frac{1}{{{n^2}}} - 2 - \frac{2}{n} = - 1 + \frac{1}{{{n^2}}}\)
b, Vì lim1=1, \(\lim \frac{1}{n} = 0\), \(\lim \frac{1}{{{n^2}}} = 0\) nên:
\({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = \lim (1 + \frac{1}{n}) = 1\) và \(\lim f({x_n}) = \lim ( - 1 + \frac{1}{{{n^2}}}) = - 1\).
Cho hàm số \(f(x) = \frac{{{x^2} - 3x + 2}}{{x - 2}}\). Tìm \(\mathop {\lim }\limits_{x \to 2} f(x)\).
Chia tử cho mẫu và xác định giới hạn theo biểu thức đã chia.
f(x) xác định trên R\{2}
Với mọi dãy \(\left( {{x_n}} \right)\) mà \({x_n} \ne 2\), và \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = 2\), ta có:
\(\lim f({x_n}) = \lim \frac{{x_n^2 - 3{x_n} + 2}}{{{x_n} - 2}} = \lim \frac{{({x_n} - 1).({x_n} - 2)}}{{{x_n} - 2}}\)=\(\lim ({x_n} - 1) = 1\)
Vậy \(\mathop {\lim }\limits_{x \to 2} f(x) = 1\).
a, Chứng minh rằng \(\mathop {\lim }\limits_{x \to 2} {x^2} = 4\) và \(\mathop {\lim }\limits_{x \to 2} (x + 1) = 3\).
b, Tìm \(\mathop {\lim }\limits_{x \to 2} ({x^2} + x + 1)\) và \(\mathop {\lim }\limits_{x \to 2} {x^2}(x + 1)\).
a, Xác định giới hạn của hàm số dựa vào giới hạn của dãy số \(\mathop {\lim }\limits_{{x_n} \to 2} \)
b, Áp dụng câu a để tính giới hạn ở câu b.
a, f(x) xác định trên R.
Với mọi dãy \(\left( {{x_n}} \right)\) mà \({x_n} \ne 2\), và \({\mathop{\rm l}\nolimits} {\rm{im }}{{\rm{x}}_n} = 2\), ta có:
\(\mathop {\lim }\limits_{x \to 2} {x^2} = \lim {({x_n})^2} = {2^2} = 4\) và \(\mathop {\lim }\limits_{x \to 2} (x + 1) = {\mathop{\rm l}\nolimits} {\rm{im (}}{{\rm{x}}_n} + 1) = 2 + 1 = 3\).
b, Ta có : \(\mathop {\lim }\limits_{x \to 2} ({x^2} + x + 1) = \mathop {\lim }\limits_{x \to 2} {x^2} + \mathop {\lim }\limits_{x \to 2} (x + 1) = 4 + 3 = 7\)
\(\mathop {\lim }\limits_{x \to 2} {x^2}(x + 1) = \mathop {\lim }\limits_{x \to 2} {x^2}.\mathop {\lim }\limits_{x \to 2} (x + 1) = 4.3 = 12\).
Tìm \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\) và \(\mathop {\lim }\limits_{x \to - 6} \frac{{{x^2} + \sqrt {2 - x} }}{{{{(2 + x)}^2}}}\).
Với \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\) ta rút gọn hàm số và xác định giới hạn.
Với \(\mathop {\lim }\limits_{x \to - 6} \frac{{{x^2} + \sqrt {2 - x} }}{{{{(2 + x)}^2}}}\) tính \(\mathop {\lim }\limits_{x \to - 6} \left( {{x^2} + \sqrt {2 - x} } \right)\) và \(\mathop {\lim }\limits_{x \to - 6} {(2 + x)^2}\) và áp dụng \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x)}}{{g(x)}} = \frac{A}{B},B \ne 0\)
a, Hàm số \(\frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\) xác định trên R\{-1}
Với \(x \ne - 1\) ta có:
\(\frac{{{x^3} + {x^2} + x + 1}}{{x + 1}} = \frac{{({x^3} + {x^2}) + (x + 1)}}{{x + 1}} = \frac{{{x^2}(x + 1) + (x + 1)}}{{x + 1}}\)= \(\frac{{({x^2} + 1).(x + 1)}}{{x + 1}} = {x^2} + 1\)
Vậy \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} + {x^2} + x + 1}}{{x + 1}}\)=\(\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} + 1} \right) = {( - 1)^2} + 1 = 2\)
b, Ta có: \(\mathop {\lim }\limits_{x \to - 6} \left( {{x^2} + \sqrt {2 - x} } \right) = {( - 6)^2} + \sqrt {2 - ( - 6)} = 36 + \sqrt 8 = 36 + 2\sqrt 2 \)
\(\mathop {\lim }\limits_{x \to - 6} {(2 + x)^2} = {(2 - 6)^2} = 16\)
Vậy \(\mathop {\lim }\limits_{x \to - 6} \frac{{{x^2} + \sqrt {2 - x} }}{{{{(2 + x)}^2}}} = \frac{{36 + 2\sqrt 2 }}{{16}} = \frac{{18 + \sqrt 2 }}{8}\).
Cho hàm số \(f(x) = \frac{1}{{{x^2}}}\) và dãy số \(({x_n})\) mà \(\lim ({x_n}) = 0\). Tính \(\lim f({x_n})\).
Tính lim 1 và \(\lim {({x_n})^2}\) sau đó tính \(\lim f({x_n})\).
Với mọi dãy \(({x_n})\) mà \(\lim ({x_n}) = 0\) ta có \(\lim {({x_n})^2}\)= 0 và lim 1=1
Vậy \(\lim f(x) = \lim \frac{1}{{x_n^2}} = + \infty \).
Tìm \(\mathop {\lim }\limits_{x \to 0} \frac{2}{{2 - \sqrt {{x^2} + 4} }}\).
Tìm \(\lim (2 - \sqrt {4 + x_n^2} )\) để xác định \(\mathop {\lim }\limits_{x \to 0} \frac{2}{{2 - \sqrt {{x^2} + 4} }}\).
Với mọi dãy \(({x_n})\) mà \(\lim ({x_n}) = 0\), ta có \(2 - \sqrt {4 + x_n^2} > 0\) vì (\({x_n} \ne 0\)) và \(\lim (2 - \sqrt {4 + x_n^2} )\)=0
Vì lim 1=1 nên \(\lim \frac{2}{{2 - \sqrt {{x_n}^2 + 4} }} = + \infty \).
Vậy \(\mathop {\lim }\limits_{x \to 0} \frac{2}{{2 - \sqrt {{x^2} + 4} }} = + \infty \).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK