Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương 3. Giới hạn. Hàm số liên tục Mục 2 trang 83, 84 Toán 11 tập 1 - Cùng khám phá: Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác...

Mục 2 trang 83, 84 Toán 11 tập 1 - Cùng khám phá: Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác...

Đồ thị hàm số liên tục trên một khoảng là đường liền trên khoảng đó. Gợi ý giải Hoạt động 3, Luyện tập 3 , Hoạt động 4, Luyện tập 4 , Vận dụng - mục 2 trang 83, 84 SGK Toán 11 tập 1 - Cùng khám phá - Bài 3. Hàm số liên tục. Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác định trên \(\left( { - \infty ; + \infty } \right)\) có đồ thị như sau...

Câu hỏi:

Hoạt động 3

Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác định trên \(\left( { - \infty ; + \infty } \right)\) có đồ thị như sau:

image

Dựa vào đồ thị, hãy dự đoán tính liên tục của các hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) trên \(\left( { - \infty ; + \infty } \right)\).

Hướng dẫn giải :

Đồ thị hàm số liên tục trên một khoảng là đường liền trên khoảng đó

Lời giải chi tiết :

Quan sát đồ thị hàm số \(y = f\left( x \right),y = g\left( x \right)\) ta thấy chúng là một đường nét liền trên \(\left( { - \infty ; + \infty } \right)\) nên hai hàm số đó liên tục trên \(\left( { - \infty ; + \infty } \right)\)


Câu hỏi:

Luyện tập 3

Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} + x - 2}}{{x - 1}}\,\,\,khi\,\,x \ne 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\,\,khi\,\,x = 1\end{array} \right.\) trên \(\mathbb{R}\)

Hướng dẫn giải :

Hàm số liên tục trên \(\mathbb{R}\) nếu nó liên tục tại mọi điểm thuộc \(\mathbb{R}\)

Hàm số phân thức hữu tỉ (thương của hai đa thức) liên tục trên từng khoảng xác định của chúng.

Xét tính liên tục của hàm số \(f\left( x \right)\) tại điểm \(x = 1\)

Lời giải chi tiết :

Tập xác định của hàm số là \(\mathbb{R}\)

+ Trên tập \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\), hàm số \(f\left( x \right) = \frac{{{x^3} + x - 2}}{{x - 1}}\) là phân thức hữu tỉ xác định trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) nên liên tục trên các khoảng này.

+ Khi \(x = 1\), ta có \(f\left( 1 \right) = 2\).

\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + x - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 2} \right) = {1^2} + 1 + 2 = 4 \ne f\left( 1 \right)\)

Vậy hàm số \(f\left( x \right)\) không liên tục tại \(x = 1\)

Suy ra hàm số đã cho gián đoạn tại \(x = 1\) hay hàm số \(f\left( x \right)\) không liên tục trên \(\mathbb{R}\)


Câu hỏi:

Hoạt động 4

Cho hàm số \(f\left( x \right) = {x^2}\) và \(g\left( x \right) = \frac{1}{x}\).

a) Xét tính liên tục của \(y = f\left( x \right)\) và \(y = g\left( x \right)\) tại \({x_0} = 1\).

b) Xét tính liên tục của hàm số \(y = f\left( x \right) + g\left( x \right)\) tại \({x_0} = 1\).

Hướng dẫn giải :

Hàm số liên tại tại điểm \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Tính \(f\left( {{x_0}} \right)\) và \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) rồi so sánh chúng

Tương tự với hàm \(y = g\left( x \right)\) và \(y = f\left( x \right) + g\left( x \right)\)

Lời giải chi tiết :

a)

+ Hàm số \(y = f\left( x \right) = {x^2}\) có TXĐ là \(\mathbb{R}\)

Với \({x_0} = 1 \Rightarrow f\left( 1 \right) = {1^2} = 1\)

\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} {x^2} = {1^2} = 1 = f\left( 1 \right)\). Suy ra, hàm số \(y = f\left( x \right)\) liên tục tại \({x_0} = 1\)

+ Hàm số \(y = g\left( x \right) = \frac{1}{x}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 0 \right\}\)

Với \({x_0} = 1 \Rightarrow g\left( 1 \right) = \frac{1}{1} = 1\)

\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{1}{x} = \frac{1}{1} = 1 = f\left( 1 \right)\). Suy ra, hàm số \(y = f\left( x \right)\) liên tục tại \({x_0} = 1\)

b) Với \({x_0} = 1 \Rightarrow f\left( 1 \right) + g\left( 1 \right) = {1^2} + \frac{1}{1} = 2\)

\(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) + g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + \frac{1}{x}} \right) = {1^2} + \frac{1}{1} = 2 = f\left( 1 \right) + g\left( 1 \right)\).

Suy ra, hàm số \(y = f\left( x \right) + g\left( x \right)\) liên tục tại \({x_0} = 1\)


Câu hỏi:

Luyện tập 4

Tìm các khoảng trên đó hàm số sau đây là liên tục: \(y = x + \tan x\)

Hướng dẫn giải :

Hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) là các hàm số liên tục trên khoảng K thì hàm số \(y = f\left( x \right) \pm g\left( x \right)\) cũng liên tục trên khoảng K

Hàm số \(y = \tan x,y = \cot x\) liên tục trên từng khoảng xác định của chúng

Tìm tập xác định của hàm số

Lời giải chi tiết :

Xét hàm số \(f\left( x \right) = x\) và \(g\left( x \right) = \tan x\)

+ Hàm số \(f\left( x \right) = x\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\mathbb{R}\)

+ Hàm số \(g\left( x \right) = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\) nên hàm số \(g\left( x \right)\) liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right)\)

Do đó, hàm số \(y = f\left( x \right) + g\left( x \right) = x + \tan x\) liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right)\)


Câu hỏi:

Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\,\,khi\,\,x \le 0\\ax + b\,\,khi\,\,0

Hướng dẫn giải :

Hàm số liên tục trên \(\mathbb{R}\) nếu nó liên tục tại mọi điểm thuộc \(\mathbb{R}\)

Dựa tính liên tục tại các điểm \(x = 0;x = 2\) để tìm \(a\) và \(b\)

Lời giải chi tiết :

Tập xác định của hàm số là \(\mathbb{R}\)

Với \(x

Với \(0

Với \(x > 2\), hàm số \(f\left( x \right) = 4 - x\) là hàm đa thức nên hàm số liên tục trên khoảng \(\left( {2; + \infty } \right)\)

Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại các điểm \(x = 0\) và \(x = 2\)

+ Với \(x = 0 \Rightarrow f\left( 0 \right) = 0 + 1 = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {x + 1} \right) = 0 + 1 = 1\)

\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {ax + b} \right) = a.0 + b = b\)

Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow b = 1\) \(\left( 1 \right)\)

+ Với \(x = 2 \Rightarrow f\left( 2 \right) = 4 - 2 = 2\)

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + b} \right) = 2a + b\)

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4 - x} \right) = 4 - 2 = 2\)

Để hàm số liên tục tại \(x = 2\) thì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 2a + b = 2\) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\), suy ra \(\left\{ \begin{array}{l}b = 1\\2a + b = 2\end{array} \right. \Leftrightarrow a = \frac{1}{2};b = 1\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK