Cho tam giác nhọn ABC có AD, BE, CF là đường cao và H là trực tâm. Chứng minh rằng
a) Tứ giác AEHF, BDHF và CDHE là các tứ giác nội tiếp
b) DA là đường phân giác của góc FDE.
Đọc kĩ dữ kiện để vẽ hình
Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \({180^o}\).
Áp dụng hai góc nội tiếp cùng chắn một cung thì bằng nhau.
a) Ta có \(\widehat {AEH} = \widehat {AFH} = {90^o}\) (Do CF và BE là đường cao)
suy ra AEHF là tứ giác nội tiếp.
Chứng minh tương tự BDHF và CDHE là các tứ giác nội tiếp
b) Theo phần a ta có BDHF nội tiếp nên \(\widehat {ABE} = \widehat {FDA}\)
DHEC nội tiếp nên \(\widehat {ADE} = \widehat {FCA}\).
Lại có \(\widehat {ABE} = \widehat {FCA}\) (cùng phụ \(\widehat {BAC}\))
Suy ra \(\widehat {FDA} = \widehat {ADE}\) hay AD là đường phân giác của góc FDE.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK