Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Chương 6. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn Giải mục 2 trang 8, 9 Toán 9 tập 2 - Cùng khám phá: Một con cá heo nhảy lên khỏi mặt nước. Sau t(s) kể từ khi nhảy lên...

Giải mục 2 trang 8, 9 Toán 9 tập 2 - Cùng khám phá: Một con cá heo nhảy lên khỏi mặt nước. Sau t(s) kể từ khi nhảy lên...

Lời Giải HĐ2, LT2, VD1, LT3 mục 2 trang 8, 9 SGK Toán 9 tập 2 - Cùng khám phá - Bài 2. Phương trình bậc hai một ẩn. Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó...Một con cá heo nhảy lên khỏi mặt nước. Sau t(s) kể từ khi nhảy lên

Câu hỏi:

Hoạt động2

Đáp án câu hỏi Hoạt động 2 trang 8

Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó:

a) 2x – x2 = 0;

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

Hướng dẫn giải :

Phân tích thành nhân tử rồi giải phương trình.

Lời giải chi tiết :

a) 2x – x2 = 0

x(2 – x) = 0

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}{x = 0}\\{2 - x = 0}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\end{array}\)

Vậy phương trình có nghiệm là x = 0 và x = 2.

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

\(\begin{array}{l}{x^2} - 6x + 9 = \frac{1}{2}\\{\left( {x - 3} \right)^2} = \frac{1}{2}\\\left[ {\begin{array}{*{20}{c}}{x - 3 = \frac{1}{{\sqrt 2 }}}\\{x - 3 = - \frac{1}{{\sqrt 2 }}}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = \frac{{6 + \sqrt 2 }}{2}}\\{x = \frac{{6 + \sqrt 2 }}{2}}\end{array}} \right.\end{array}\)

Vậy phương trình có 2 nghiệm là \(x = \frac{{6 + \sqrt 2 }}{2}\);\(x = \frac{{6 - \sqrt 2 }}{2}\).


Câu hỏi:

Luyện tập2

Đáp án câu hỏi Luyện tập 2 trang 8

Giải các phương trình sau:

a) 3x2 = - 4x;

b) \(2{x^2} - 3 = 0\)

Hướng dẫn giải :

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết :

a) 3x2 = - 4x;

3x2 + 4x = 0

x(3x + 4) = 0

x = 0 hoặc 3x + 4 = 0

x = 0 hoặc x = \(\frac{{ - 4}}{3}\).

Vậy phương trình có hai nghiệm x1 = 0, x2 = \(\frac{{ - 4}}{3}\).

b) \(2{x^2} - 3 = 0\)

\(\begin{array}{l}2{x^2} = 3\\{x^2} = \frac{3}{2}\end{array}\)

x = \(\frac{{\sqrt 6 }}{2}\) hoặc \(x = - \frac{{\sqrt 6 }}{2}\)

Vậy phương trình có hai nghiệm x1 = \(\frac{{\sqrt 6 }}{2}\), x2 =\( - \frac{{\sqrt 6 }}{2}\).


Câu hỏi:

Vận dụng1

Gợi ý giải câu hỏi Vận dụng 1 trang 8

Một con cá heo nhảy lên khỏi mặt nước. Sau t(s) kể từ khi nhảy lên, cá heo ở độ cao h = 6t – 5t2 (m) so với mặt nước. Sau bao lâu con cá heo ấy lại quay trở về mặt nước?

Hướng dẫn giải :

Con cá heo quay trở về mặt nước tương ứng với h = 0

Giải phương trình 6t – 5t2 = 0 để tìm t.

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết :

Thay h = 0 vào h = 6t – 5t2 (t > 0) ta có:

6t – 5t2 = 0

t(6 – 5t) = 0

t = 0 (L) hoặc t = \(\frac{6}{5} = 1,2\)(TM)

Vậy sau 1,2 giây con cá heo ấy lại quay trở về mặt nước.


Câu hỏi:

Luyện tập3

Gợi ý giải câu hỏi Luyện tập 3 trang 9

Giải phương trình \(2{x^2} - 5x + 2 = 0\).

Hướng dẫn giải :

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết :

\(\begin{array}{l}2{x^2} - 5x + 2 = 0\\2{x^2} - 5x = - 2\\{x^2} - \frac{5}{2}x + {\left( {\frac{5}{2}} \right)^2} = - 1 + {\left( {\frac{5}{2}} \right)^2}\\{\left( {x - \frac{5}{2}} \right)^2} = \frac{{17}}{4}\end{array}\)

\(x - \frac{5}{2} = \frac{{\sqrt {17} }}{2}\) hoặc \(x - \frac{5}{2} = - \frac{{\sqrt {17} }}{2}\)

\(x = \frac{{\sqrt {17} }}{2} + \frac{5}{2}\) hoặc \(x = - \frac{{\sqrt {17} }}{2} + \frac{5}{2}\)

Vậy phương trình có hai nghiệm x1 = \(\frac{{5 + \sqrt {17} }}{2}\), x2 =\(\frac{{5 - \sqrt {17} }}{2}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK