Trả lời câu hỏi Hoạt động 4 trang 119
Quay lại hoạt động gấp hình tròn trong Hoạt động 1.
Hãy xác định các số đo cung và tỉ số trong các ô ? của bảng dưới đây. Em có nhận xét gì?
+ Số đo các cung AB, AC, AD lần lượt có số đo là \({180^o}\), \({90^o}\), \({45^o}\).
+ Tỉ số của số đo cung và \({360^o}\) bằng thương giữa số đo cung tương ứng và \({360^o}\).
+ Nhận xét: Tỉ số của số đo cung và \({360^o}\) bằng tỉ số của diện tích hình quạt tròn giới hạn bởi cung và diện tích hình tròn.
Nhận xét: Tỉ số của số đo cung và \({360^o}\) bằng tỉ số của diện tích hình quạt tròn giới hạn bởi cung và diện tích hình tròn.
Trả lời câu hỏi Luyện tập 3 trang 120
Tính diện tích của hình quạt tròn bán kính 3cm ứng với cung \({210^o}\).
Công thức tính diện tích hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{{\pi {R^2}n}}{{360}}\).
Diện tích của hình quạt tròn bán kính 3cm ứng với cung \({210^o}\) là:
\({S_q} = \frac{{\pi {{.3}^2}.210}}{{360}} = \frac{{21\pi }}{4}\left( {c{m^2}} \right)\).
Trả lời câu hỏi Luyện tập 4 trang 120
Tính diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm có bán kính lần lượt là 5cm và 3cm.
Diện tích hình vành khuyên giới hạn bởi hai đường tròn (O; R) và (O; r) (với \(r < R\)): \({S_{vk}} = \pi \left( {{R^2} - {r^2}} \right)\).
Diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm có bán kính lần lượt là 5cm và 3cm là:
\({S_{vk}} = \pi \left( {{5^2} - {3^2}} \right) = 16\pi \left( {c{m^2}} \right)\).
Trả lời câu hỏi Vận dụng trang 121
Trong Hình 5.54, chiếc quạt có dạng một hình quạt tròn tâm O cung AB, bán kính \(OA = OB = 20cm\). Giấy được dán trong phần giới hạn bởi cung AB, cung CD, đoạn thẳng AC và BD với \(OC = OD = 10cm\). Biết khi mở rộng tối đa, hai nan quạt ngoài cùng tạo thành một góc \(\widehat {AOB} = {140^o}\). Tính chu vi và diện tích mảnh giấy để dán một mặt quạt (diện tích mép không đáng kể).
Công thức tính độ dài cung \({n^o}\) của đường tròn bán kính R: \(l = \frac{{\pi Rn}}{{180}}\).
Công thức tính diện tích hình quạt tròn bán kính R ứng với cung \({n^o}\): \({S_q} = \frac{{\pi {R^2}n}}{{360}}\).
Ta có: \(BD = AC = OB - OD = 20 - 10 = 10cm\).
Diện tích hình quạt tâm O, cung AB là:
\({S_{AOB}} = \frac{{\pi {{.20}^2}.140}}{{360}} = \frac{{1400}}{9}\pi \left( {c{m^2}} \right)\).
Diện tích hình quạt tâm O, cung CD là:
\({S_{COD}} = \frac{{\pi {{.10}^2}.140}}{{360}} = \frac{{350}}{9}\pi \left( {c{m^2}} \right)\).
Diện tích mảnh giấy để dán một mặt quạt là:
\(S = {S_{AOB}} - {S_{COD}} = \frac{{1400}}{9}\pi - \frac{{350}}{9}\pi = \frac{{350}}{3}\pi \left( {c{m^2}} \right)\).
Độ dài cung AB là:
\({l_{AB}} = \frac{{\pi .20.140}}{{180}} = \frac{{140}}{9}\pi \left( {cm} \right)\).
Độ dài cung CD là:
\({l_{CD}} = \frac{{\pi .10.140}}{{180}} = \frac{{70}}{9}\pi \left( {cm} \right)\).
Chu vi mảnh giấy để dán một mặt quạt là:
\(AC + BD + {l_{AB}} + {l_{CD}} = 10 + 10 + \frac{{140\pi }}{9} + \frac{{70\pi }}{9} = 20 + \frac{{70\pi }}{3}\left( {cm} \right)\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK