Tính số đo x trong mỗi trường hợp ở Hình 5.72.
a) + Vì góc DCA và góc DBA là các góc nội tiếp cùng chắn cung nhỏ AD nên \(\widehat {DCA} = \widehat {DBA}\).
Vì AB//CD nên \(x = \widehat {DCA}\).
b) + Vì góc QPN là góc nội tiếp chắn cung nhỏ NQ nên: \(sđ{{\overset\frown{QN}}_{nhỏ}}=2\widehat{NPQ}\)
+ \(sđ{{\overset\frown{QN}}_{nhỏ}}+sđ{{\overset\frown{PQ}}_{nhỏ}}={{180}^{o}}\) nên tính được số đo cung PQ nhỏ.
+ Vì góc MNQ là góc nội tiếp chắn cung nhỏ MQ, góc QNP là góc nội tiếp chắn cung nhỏ PQ của đường tròn (O). Mà $\widehat{MNQ}=\widehat{QNP}$ nên \(sđ{{\overset\frown{MQ}}_{nhỏ}}=sđ{{\overset\frown{PQ}}_{nhỏ}}\).
+ \(sđ{{\overset\frown{MN}}_{nhỏ}}=sđ{{\overset\frown{QN}}_{nhỏ}}-sđ{{\overset\frown{MQ}}_{nhỏ}}\).
+ Vì góc NQM là góc nội tiếp chắn cung nhỏ NM của (O) nên \(x = \frac{1}{2}{.80^o} = {40^o}\).
a) Vì góc DCA và góc DBA là các góc nội tiếp cùng chắn cung AD nên \(\widehat {DCA} = \widehat {DBA} = {50^o}\).
Vì AB//CD nên \(x = \widehat {DCA} = {50^o}\).
b) Vì góc QPN là góc nội tiếp chắn cung nhỏ NQ nên:
\(sđ{{\overset\frown{QN}}_{nhỏ}}=2\widehat{NPQ}={{2.65}^{o}}={{130}^{o}}\).
Ta có: \(sđ{{\overset\frown{QN}}_{nhỏ}}+sđ{{\overset\frown{PQ}}_{nhỏ}}={{180}^{o}}\) nên
\(sđ{{\overset\frown{PQ}}_{nhỏ}}={{180}^{o}}-sđ{{\overset\frown{QN}}_{nhỏ}}={{180}^{o}}-{{130}^{o}}={{50}^{o}}\).
Vì góc MNQ là góc nội tiếp chắn cung nhỏ MQ, góc QNP là góc nội tiếp chắn cung nhỏ PQ của đường tròn (O). Mà $\widehat{MNQ}=\widehat{QNP}$ nên
\(sđ{{\overset\frown{MQ}}_{nhỏ}}=sđ{{\overset\frown{PQ}}_{nhỏ}}={{50}^{o}}\).
Ta có:
\(sđ{{\overset\frown{MN}}_{nhỏ}}=sđ{{\overset\frown{QN}}_{nhỏ}}-sđ{{\overset\frown{MQ}}_{nhỏ}}={{130}^{o}}-{{50}^{o}}={{80}^{o}}.\)
Vì góc NQM là góc nội tiếp chắn cung nhỏ NM của (O) nên \(x = \frac{1}{2}{.80^o} = {40^o}\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK