Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.
Trong Hình 4.32, mặt tiền mái nhà có chiều rộng \(BC = 3m\) và hai bên mái AB, AC cùng bằng 1,8m.
a) Tính chiều cao AH của mái nhà.
b) Tính góc BAC tạo bởi hai mép của mái nhà.
a) Tam giác ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến nên \(BH = HC = \frac{{BC}}{2}\).
Tam giác ABH vuông tại H nên \(A{H^2} + B{H^2} = A{B^2}\) (định lí Pythagore), từ đó tính được AH.
b) Tam giác BHA vuông tại H nên \(\sin BAH = \frac{{BH}}{{AB}}\), từ đó tính được góc BAH.
Tam giác ABC cân tại A nên AH là đường cao đồng thời là đường phân giác của tam giác.
Do đó, \(\widehat {BAC} = 2\widehat {BAH}\).
a) Tam giác ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến nên \(BH = HC = \frac{{BC}}{2} = \frac{3}{2} = 1,5m\).
Tam giác ABH vuông tại H nên
\(A{H^2} + B{H^2} = A{B^2}\) (định lí Pythagore)
Do đó, \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {1,{8^2} - 1,{5^2}} = \frac{{3\sqrt {11} }}{{10}} \approx 1\left( m \right)\)
b) Tam giác BHA vuông tại H nên
\(\sin BAH = \frac{{BH}}{{AB}} = \frac{{1,5}}{{1,8}} = \frac{5}{6}\), suy ra \(\widehat {BAH} \approx {56^o}27’\).
Tam giác ABC cân tại A nên AH là đường cao đồng thời là đường phân giác của tam giác.
Do đó, \(\widehat {BAC} = 2\widehat {BAH} \approx {112^o}54’\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK