Trả lời câu hỏi Hoạt động 2 trang 58
Trong không gian, cho 2 vec tơ \(\vec a\)và\(\vec b\) . Lấy một điểm A tùy ý.
a) Vẽ \(\overrightarrow {AB} \)\( = \vec a\),\(\overrightarrow {BC} \)\( = \vec b\)
b) Tổng của 2 vec tơ \(\vec a\)và\(\vec b\) bằng vec tơ nào trong hình 4?
a) Ghi rõ các bước để vẽ hình
b) Áp dụng quy tắc 3 điểm \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
a) – Qua A vẽ một đường thẳng song song với \(\vec a\) . Trên đường thẳng đó lấy điểm B sao cho \(AB = \left| {\vec a} \right|\)
– Qua B vẽ một đường thẳng song song với \(\vec b\). Trên đường thẳng đó lấy điểm C sao cho \(BC = \left| {\vec b} \right|\)
b) Ta có: \(\vec a + \vec b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Trả lời câu hỏi Hoạt động 3 trang 59
Cho hình hộp ABCD.A’B’C’D’. Tìm liên hệ giữa \(\overrightarrow {AB} + \overrightarrow {AD} \) và \(\overrightarrow {AC} ;\;\overrightarrow {AC} + \overrightarrow {AA’} \) và \(\overrightarrow {AC’} \)
Áp dụng quy tắc ba điểm
Áp dụng quy tắc ba điểm ta thấy:
\(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {BD} \) (1)
Mà từ hình vẽ ta thấy \(\overrightarrow {BD} = \overrightarrow {AC} \;\;\;\;\;\;\;\;\left( 2 \right)\)
Từ (1) (2) => \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
\(\overrightarrow {AC} + \overrightarrow {AA’} = \overrightarrow {A’C} \) (3)
Mà \(\overrightarrow {A’C} = \overrightarrow {AC’} \) (4)
Từ (3), (4) =>\(\overrightarrow {AC} + \overrightarrow {AA’} = \overrightarrow {AC’} \)
Trả lời câu hỏi Hoạt động 4 trang 59
Trong không gian , cho hai vecto\(\;\vec a,\vec b.\;\) Lấy một điểm M tùy ý
a) Vẽ \(\overrightarrow {MA} = \vec a,\;\overrightarrow {MB} = \vec b\; ,\overrightarrow {MC} = \overrightarrow { - b} \)
b) Tổng của hai vecto \(\vec a\;\)và \(\;\overrightarrow { - b} \) bằng vecto nào trong hình 7
Vì \(\overrightarrow { - CM} = \overrightarrow {NA} \) ; \(\overrightarrow {NA} + \overrightarrow {MA} = \overrightarrow {MN} \)
\(\vec a + \overrightarrow {\left( { - b} \right)} = \overrightarrow {MN} \)
Trả lời câu hỏi Hoạt động 5 trang 60
Nêu định nghĩa tích của một số thực \(k \ne 0\;\)với vecto\(\;\vec a\; \ne \vec 0\) trong mặt phẳng
Cho số thực \(k \ne 0\) và \(vecto\;\vec a \ne \vec 0\). Tích của số k với vecto \(\vec a\) là một vecto, kí hiệu là \(k\vec a,\;\)được xác định như sau
+, Cùng hướng với vecto \(\vec a\) nếu k\( > 0,\;\)ngược hướng với vecto \(\vec a\) nếu k<0
+, Có độ dài bằng \(\left| k \right|.\left| {\vec a} \right|\)
Trả lời câu hỏi Hoạt động 6 trang 61
Trong không gian, cho hai vecto \(\vec a,\vec b\)khác \(\;\vec 0\). Lấy một điểm O tùy ý.
a, Vẽ hai vecto \(\overrightarrow {OA} = \vec a,\;\overrightarrow {OB} = \vec b\)
b, Khi đó , hai vecto \(\overrightarrow {OA} ,\overrightarrow {OB} \) có giá nằm trong cùng mặt phẳng (P) (hình 10). Nếu định nghĩa góc giữa hai vecto \(\overrightarrow {OA} ,\;\overrightarrow {OB} \) trong hai mặt phẳng (P)
Trong không gian, cho hai vecto
\(\vec a,\vec b\)khác \(\;\vec 0\). Lấy một điểm O tùy ý và vẽ hai vecto\(\;\overrightarrow {OA} = \vec a,\overrightarrow {OB} = \vec b\). Góc giữa hai vecto \(\vec a,\overrightarrow {b\;} \) trong không gian, ký hiệu \(\left( {\vec a,\vec b} \right)\), là góc giữa hai vecto \(\;\overrightarrow {OA} ,\overrightarrow {OB} \)
Trả lời câu hỏi Hoạt động 7 trang 61
Trong không gian , cho hình lập phương ABCD.A’B’C’D’ có độ dài bằng 3cm (hình 12)
a, Tính góc giữa hai vecto \(\overrightarrow {AC} ,\overrightarrow {A’D’} \)
b, Tính \(\left| {\overrightarrow {AC} } \right|,\left| {\overrightarrow {A’D’} } \right|\). Cos(\(\overrightarrow {AC} ,\overrightarrow {A’D’} \))
Áp dụng quy tăc 3 điểm và vectơ trong không gian
Ta có A’D’//AD
Góc giữa \(\overrightarrow {AC} \;\)và\(\;\overrightarrow {A’D’} \)= \(\;\overrightarrow {AC} \) và \(\overrightarrow {AD} \)
a, Mà ABCD là hình vuông => \(\widehat {CAD} = 45^\circ \)
b, \(\overrightarrow {\left| {AC} \right|} .|\overrightarrow {A’D’|} \)=AC.AD= 3.3=9
Cos(\(\overrightarrow {AC} ,\overrightarrow {A’D’} \))= cos(\(\overrightarrow {AC} ,\overrightarrow {AD} )\)= \(\frac{{\overrightarrow {AC} .\overrightarrow {AD} }}{{\overrightarrow {\left| {AC} \right|} .\overrightarrow {\left| {AD} \right|} }} = \frac{{3.3}}{{3.3}} = 1\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK