Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)
Vì đèn cân bằng nên trọng lực của đèn sẽ phân bố đều trên các chân của giá đỡ. Từ tọa độ các điểm đã cho, ta tìm được cái mối liên hệ với vecto lực và tìm được tọa độ của các vecto lực
Ta có: \(\overrightarrow {E{A_1}} = (0;1; - 6);\overrightarrow {E{A_2}} = (\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6);\overrightarrow {E{A_3}} = ( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6) \Rightarrow E{A_1} = E{A_2} = E{A_3} = \sqrt {37} \)
\(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) vì đèn cân bằng và trọng lực của đèn tác dụng đều lên 3 chân của giá đỡ
Do đó:
\(\overrightarrow {{F_1}} = k\overrightarrow {E{A_1}} = (0;k; - 6k)\)
\(\overrightarrow {{F_2}} = k\overrightarrow {E{A_2}} = (\frac{{\sqrt 3 }}{2}k; - \frac{1}{2}k; - 6k)\)
\(\overrightarrow {{F_3}} = k\overrightarrow {E{A_3}} = ( - \frac{{\sqrt 3 }}{2}k; - \frac{1}{2}k; - 6k)\)
\( \Rightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = (0;0; - 18k)\)
Mà \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P = (0;0; - 300) \Rightarrow - 18k = 300 \Leftrightarrow k = \frac{{50}}{3}\)
Vậy \(\overrightarrow {{F_1}} = (0;\frac{{50}}{3}; - 100)\); \(\overrightarrow {{F_2}} = (\frac{{25\sqrt 3 }}{3}; - \frac{{50}}{6}; - 100)\);\(\overrightarrow {{F_3}} = ( - \frac{{25\sqrt 3 }}{3}; - \frac{{50}}{6}; - 100)\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK