Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương IV. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song Bài 42 trang 113 SBT Toán 11 - Cánh diều: Cho hình hộp \(ABCD. A’B’C’D’\). Gọi \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) lần lượt là trung điểm của \(AB\), \(BC\), \(CC’\)...

Bài 42 trang 113 SBT Toán 11 - Cánh diều: Cho hình hộp \(ABCD. A’B’C’D’\). Gọi \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) lần lượt là trung điểm của \(AB\), \(BC\), \(CC’\)...

Chỉ ra rằng \(RS\parallel NP\), \(PQ\parallel MS\) và \(QR\parallel MN\) để chỉ ra 6 điểm đồng phẳng. b) Chứng minh rằng \(MNQR\). Giải chi tiết - Bài 42 trang 113 sách bài tập toán 11 - Cánh diều - Bài 5. Hình lăng trụ và hình hộp. Cho hình hộp \(ABCD. A'B'C'D'\). Gọi \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\)...

Đề bài :

Cho hình hộp \(ABCD.A’B’C’D’\). Gọi \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) lần lượt là trung điểm của \(AB\), \(BC\), \(CC’\), \(C’D’\), \(D’A’\), \(AA’\). Chứng minh rằng:

a) Sáu điểm \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) cùng thuộc một mặt phẳng.

b) Các đoạn thẳng \(MQ\), \(NR\), \(PS\) cắt nhau tại trung điểm của mỗi đoạn.

Hướng dẫn giải :

a) Chỉ ra rằng \(RS\parallel NP\), \(PQ\parallel MS\) và \(QR\parallel MN\) để chỉ ra 6 điểm đồng phẳng.

b) Chứng minh rằng \(MNQR\), \(RSNP\) là các hình bình hành để suy ra điều phải chứng minh.

Lời giải chi tiết :

image

a) Do \(R\) là trung điểm \(A’D’\), \(S\) là trung điểm \(AA’\) nên \(RS\) là đường trung bình của tam giác \(A’AD’\). Suy ra \(RS\parallel AD’\). Tương tự ta cũng có \(NP\parallel BC’\).

Tứ giác \(ABC’D’\) có \(AB = C’D’\) và \(AB\parallel C’D’\) nên là hình bình hành. Suy ra \(AD’\parallel BC’\) và \(AD’ = BC’\). Từ đó suy ra \(RS\parallel NP\), và 4 điểm \(R\), \(S\), \(N\), \(P\) đồng phẳng.

Chứng minh tương tự ta có \(PQ\parallel MS\) và \(QR\parallel MN\).

Như vậy, 6 điểm \(M\), \(N\), \(P\), \(Q\), \(R\), \(S\) đồng phẳng. Bài toán được chứng minh.

b) Ta có \(RS\parallel NP\).

Vì \(RS\) là đường trung bình của tam giác \(A’AD’\) nên \(RS = \frac{1}{2}AD’\). Tương tự ta cũng có \(NP = \frac{1}{2}BC’\). Do \(AD’ = BC’\) nên \(RS = NP\). Vậy tứ giác \(RSNP\) là hình bình hành. Suy ra \(NR\) và \(PS\) cắt nhau tại trung điểm \(O\) của mỗi đường.

Chứng minh tương tự ta cũng có \(MNQR\) là hình bình hành, từ đó ta có \(NR\) và \(MQ\) cắt nhau tại trung điểm của mỗi đường. Do \(O\) là trung điểm của \(NR\), nên \(O\) cũng là trung điểm của \(MQ\).

Vậy ba đoạn thẳng \(MQ\), \(NR\) và \(PS\) cắt nhau trung điểm \(O\) của mỗi đường.

Bài toán được chứng minh.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK