Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương I. Hàm số lượng giác và phương trình lượng giác Bài 43 trang 23 SBT Toán 11 - Cánh diều: Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số...

Bài 43 trang 23 SBT Toán 11 - Cánh diều: Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số...

Sử dụng tính chất \( - 1 \le \sin x \le 1\), \( - 1 \le \cos x \le 1\) với \(\forall x \in \mathbb{R}\). Lời giải bài tập, câu hỏi - Bài 43 trang 23 sách bài tập toán 11 - Cánh diều - Bài 3. Hàm số lượng giác và đồ thị. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số...

Đề bài :

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

a) \(y = 3\sin x + 5\)

b) \(y = \sqrt {1 + \cos 2x} + 3\)

c) \(y = 4 - 2\sin x\cos x\)

d) \(y = \frac{1}{{4 - \sin x}}\)

Hướng dẫn giải :

Sử dụng tính chất \( - 1 \le \sin x \le 1\), \( - 1 \le \cos x \le 1\) với \(\forall x \in \mathbb{R}\).

Lời giải chi tiết :

a) Tập xác định của hàm số là \(\mathbb{R}\).

Do \( - 1 \le \sin x \le 1 \Rightarrow - 3 \le 3\sin x \le 3 \Rightarrow 2 \le 3\sin x + 5 \le 8\).

Vậy, giá trị lớn nhất của hàm số bằng 8 khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \)\(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng 2 khi \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \)\(\left( {k \in \mathbb{Z}} \right)\).

b) Hàm số xác định khi \(1 + \cos 2x \ge 0 \Leftrightarrow \cos 2x \ge - 1\) (luôn đúng với \(\forall x \in \mathbb{R}\))

Do đó, tập xác định của hàm số là \(\mathbb{R}\).

Vì \( - 1 \le \cos 2x \le 1 \Rightarrow 0 \le 1 + \cos 2x \le 2 \Rightarrow 0 \le \sqrt {1 + \cos 2x} \le \sqrt 2 \)

\( \Rightarrow 3 \le \sqrt {1 + \cos 2x} + 3 \le 3 + \sqrt 2 \).

Vậy, giá trị lớn nhất của hàm số bằng \(3 + \sqrt 2 \) khi \(\cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \) \(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số là 3 khi \(\cos 2x = - 1 \Leftrightarrow 2x = \pi + k2\pi \Leftrightarrow x = \frac{\pi }{2} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

c) Tập xác định của hàm số là \(\mathbb{R}\).

Do \(\sin 2x = 2\sin x\cos x\), nên \(y = 4 - 2\sin x\cos x = 4 - \sin 2x\).

Vì \( - 1 \le \sin 2x \le 1 \Rightarrow 1 \ge - \sin 2x \ge - 1 \Rightarrow 5 \ge 4 - \sin 2x \ge 3\), nên giá trị lớn nhất của hàm số bằng 5 khi \(\sin 2x = - 1 \Leftrightarrow 2x = - \frac{\pi }{2} + k2\pi \Leftrightarrow x = - \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng 3 khi \(\sin 2x = 1 \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

d) Hàm số xác định khi \(4 - \sin x \ne 0 \Leftrightarrow \sin x \ne 4\) (luôn đúng do \(\sin x \le 1

Ta có \( - 1 \le \sin x \le 1 \Rightarrow 1 \ge - \sin x \ge - 1 \Rightarrow 5 \ge 4 - \sin x \ge 3 \Rightarrow \frac{1}{5} \le \frac{1}{{4 - \sin x}} \le \frac{1}{3}\).

Vậy giá trị lớn nhất của hàm số bằng \(\frac{1}{3}\) khi \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\); giá trị nhỏ nhất của hàm số bằng \(\frac{1}{5}\) khi \(\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK