Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương I. Hàm số lượng giác và phương trình lượng giác Bài 59 trang 30 SBT Toán 11 - Cánh diều: Tìm góc lượng giác \(x\) sao cho...

Bài 59 trang 30 SBT Toán 11 - Cánh diều: Tìm góc lượng giác \(x\) sao cho...

Sử dụng các kết quả sau: \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k{360^o}\\x = {180^o} - \alpha + k{360^o}\end{array} \right. Gợi ý giải - Bài 59 trang 30 sách bài tập toán 11 - Cánh diều - Bài 4. Phương trình lượng giác cơ bản. Tìm góc lượng giác \(x\) sao cho...

Đề bài :

Tìm góc lượng giác \(x\) sao cho:

a) \(\sin 2x = \sin {42^o}\)

b) \(\sin \left( {x - {{60}^o}} \right) = - \frac{{\sqrt 3 }}{2}\)

c) \(\cos \left( {x + {{50}^o}} \right) = \frac{1}{2}\)

d) \(\cos 2x = \cos \left( {3x + {{10}^o}} \right)\)

e) \(\tan x = \tan {25^o}\)

g) \(\cot x = \cot \left( { - {{32}^o}} \right)\)

Hướng dẫn giải :

Sử dụng các kết quả sau:

  • \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k{360^o}\\x = {180^o} - \alpha + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  • \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k{360^o}\\x = - \alpha + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
  • \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)
  • \(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)
  • Lời giải chi tiết :

    a) Ta có: \(\sin 2x = \sin {42^o} \Leftrightarrow \left[ \begin{array}{l}2x = {42^o} + k{360^o}\\2x = {180^o} - {42^o} + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {21^o} + k{180^o}\\x = {69^o} + k{180^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

    b) Ta có \(\sin \left( { - {{60}^o}} \right) = - \frac{{\sqrt 3 }}{2}\), phương trình trở thành:

    \(\sin \left( {x - {{60}^o}} \right) = \sin \left( { - {{60}^o}} \right) \Leftrightarrow \left[ \begin{array}{l}x - {60^o} = - {60^o} + k{360^o}\\x - {60^o} = {180^o} + {60^o} + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k{360^o}\\x = - {60^o} + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

    c) Ta có \(\cos {60^o} = \frac{1}{2}\), phương trình trở thành:

    \(\cos \left( {x + {{50}^o}} \right) = \cos \left( {{{60}^o}} \right) \Leftrightarrow \left[ \begin{array}{l}x + {50^o} = {60^o} + k{360^o}\\x + {50^o} = - {60^o} + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {10^o} + k{360^o}\\x = - {110^o} + k{360^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

    d) Ta có:

    \(\cos 2x = \cos \left( {3x + {{10}^o}} \right) \Leftrightarrow \left[ \begin{array}{l}2x = 3x + {10^o} + k{360^o}\\2x = - \left( {3x + {{10}^o}} \right) + k{360^o}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - x = {10^o} + k{360^o}\\5x = - {10^o} + k{360^o}\end{array} \right.\)

    \( \Leftrightarrow \left[ \begin{array}{l}x = - {10^o} + k{360^o}\\x = - {2^o} + k{72^o}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

    e) Ta có: \(\tan x = \tan {25^o} \Leftrightarrow x = {25^o} + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)

    g) Ta có: \(\cot x = \cot \left( { - {{32}^o}} \right) \Leftrightarrow x = - {32^o} + k{180^o}\)\(\left( {k \in \mathbb{Z}} \right)\)

    Dụng cụ học tập

    Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

    Chia sẻ

    Chia sẻ qua Facebook Chia sẻ

    Sách Giáo Khoa: Cánh diều

    - Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

    Đọc sách

    Bạn có biết?

    Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

    Nguồn : Wikipedia - Bách khoa toàn thư

    Tâm sự Lớp 11

    Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

    - Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

    Nguồn : Sưu tập

    Copyright © 2024 Giai BT SGK