Cho đường thẳng d và mặt phẳng (P), ta có định nghĩa sau:
- Nếu đường thẳng d vuông góc với mặt phẳng (P) thì góc giữa d và (P) bằng \({90^0}\).
- Nếu đường thẳng d không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng d và mặt phẳng (P) là góc giữa d và hình chiếu d’ của đường thẳng d trên (P).
Nhận xét: Góc giữa đường thẳng và mặt phẳng có số đo từ \({0^0}\) đến \({90^0}\).
a) Nửa mặt phẳng
Một đường thẳng nằm trong mặt phẳng chia mặt phẳng đó thành hai phần, mỗi phần được gọi là một nửa mặt phẳng và đường thẳng đó được gọi là bờ của một nửa mặt phẳng này.
b) Góc nhị diện
Góc nhị diện là hình gồm hai nửa mặt phẳng có chung bờ.
Ví dụ: Xét góc nhị diện gồm hai nửa mặt phẳng (P) và (Q) có chung bờ là đường thẳng d, kí hiệu là [P, d, Q]. Đường thẳng d gọi là cạnh của góc nhị diện, mỗi nửa mặt phẳng (P) và (Q) gọi là một mặt của góc nhị diện.
Chú ý: Góc nhị diện còn được kí hiệu là [M, d, N] với M, N lần lượt là các điểm thuộc các nửa mặt phẳng (P). (Q) nhưng không thuộc đường thẳng d.
c) Góc phẳng nhị diện
Trong không gian, cho góc nhị diện. Một góc có đỉnh thuộc cạnh của góc nhị diện, hai cạnh của góc đó lần lượt thuộc hai mặt nhị diện và cùng vuông góc với cạnh của góc nhị diện, được gọi là góc phẳng nhị diện của góc nhị diện đã cho.
Ví dụ: Cho góc nhị diện [P, d, Q]. Lấy O thuộc d, hai tia Ox, Oy lần lượt nằm trên hai nửa mặt phẳng (P), (Q) và cùng vuông góc với d. Khi đó góc xOy là góc phẳng nhị diện của góc nhị diện [P, d, Q].
Nhận xét: Cạnh của góc nhị diện luôn vuông góc với mặt phẳng chứa góc phẳng nhị diện của góc nhị diện đó.
d) Số đo của góc nhị diện
- Số đo của một góc phẳng nhị diện được gọi là số đo của góc nhị diện đó.
- Nếu số đo góc phẳng nhị diện bằng 90° thì góc nhị diện đó gọi là góc nhị diện vuông.
Nhận xét: Số đo của góc nhị diện từ \({0^0}\) đến \({180^0}\).
Bài 1. Cho tứ diện \(ABCD\) có cạnh $AB$, $BC$, $CD$ bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?
A. Góc giữa \(AC\) và \(\left( {BCD} \right)\) là góc \(ACB\).
B. Góc giữa \(AD\) và \(\left( {ABC} \right)\) là góc \(ADB\).
C. Góc giữa \(AC\) và \(\left( {ABD} \right)\) là góc \(CAB\).
D. Góc giữa \(CD\) và \(\left( {ABD} \right)\) là góc \(CBD\).
Từ giả thiết ta có \(\left\{ \begin{array}{l}AB \bot BC\\AB \bot CD\end{array} \right. \Rightarrow AB \bot \left( {BCD} \right)\).
Do đó \(\left( {AC,\left( {BCD} \right)} \right) = \left( {AC,BC} \right) = \widehat {ACB}\).
Chọn đáp án A.
Bài 2. Cho tam giác \(ABC\) vuông cân tại \(A\) và \(BC = a.\) Trên đường thẳng qua \(A\) vuông góc với \(\left( {ABC} \right)\) lấy điểm \(S\) sao cho $SA = \dfrac{{a\sqrt 6 }}{2}$. Tính số đo góc giữa đường thẳng \(SA\) và \(\left( {ABC} \right)\)
A. \(30^\circ \).
B. \(45^\circ \).
C. \(60^\circ \).
D. \(90^\circ \).
\(SA \bot \left( {ABC} \right) \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = 90^\circ \).
Chọn đáp án D.
Bài 3. Cho hình lập phương\(ABCD.A’B’C’D’\). Gọi $\alpha $ là góc giữa $AC’$ và mp $\left( {A’BCD’} \right).$ Chọn khẳng định đúng trong các khẳng định sau?
A. $\alpha {\rm{ }} = {\rm{ }}{30^0}.$
B. \(\tan \alpha = \dfrac{2}{{\sqrt 3 }}.\)
C. $\alpha {\rm{ }} = {\rm{ }}{45^0}.$
D. \(\tan \alpha = \sqrt 2 .\)
Gọi $\left\{ \begin{array}{l}A’C \cap AC’ = I\\C’D \cap CD’ = H\end{array} \right.$
mà \(\left\{ \begin{array}{l}C’D \bot CD’\\C’D \bot A’D’\end{array} \right. \Rightarrow C’D \bot \left( {A’BCD’} \right) \Rightarrow IH\) là hình chiếu vuông góc của \(IC’\) lên \(\left( {A’BCD’} \right) \Rightarrow \widehat {C’IH}\)là góc giữa \(IC’\) và \(\left( {A’BCD’} \right)\) và cũng là góc giữa \(AC’\) và \(\left( {A’BCD’} \right).\) Mà \(\tan \widehat {C’IH} = \dfrac{{C’H}}{{IH}} = \dfrac{1}{{\sqrt 2 }}.2 = \sqrt 2 .\)
Chọn đáp án D.
Bài 4. Trong các mệnh đề sau mệnh đề nào đúng?
A. Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho
B. Nếu \(a\) và \(b\) song song (hoặc \(a\) trùng với \(b\)) thì góc giữa đường thẳng $a$ và mặt phẳng \(\left( P \right)\) bằng góc giữa đường thẳng \(b\) và mặt phẳng \(\left( P \right)\) .
C. Nếu góc giữa đường thẳng $a$ và mặt phẳng \(\left( P \right)\) bằng góc giữa đường thẳng \(a\) và mặt phẳng \(\left( Q \right)\) thì mặt phẳng \(\left( P \right)\) song song với mặt phẳng \(\left( Q \right)\).
D. Góc giữa đường thẳng $a$ và mặt phẳng \(\left( P \right)\) bằng góc giữa đường thẳng \(b\) và mặt phẳng \(\left( P \right)\) thì \(a\) song song với \(b\).
Đáp án A sai vì nếu trường hợp đường thẳng vuông góc với mặt phẳng thì định nghĩa đó không còn đúng.
Đáp án C sai vì \(\left( P \right)\) và \(\left( Q \right)\) có thể trùng nhau.
Đáp án D sai vì \(a,b\) có thể trùng nhau.
Chọn đáp án B.
Bài 5. Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và \(SA = SB = SC = b\). Gọi \(G\) là trọng tâm \(\Delta ABC\). Độ dài \(SG\) là:
A. $\dfrac{{\sqrt {9{b^2} + 3{a^2}} }}{3}$.
B. $\dfrac{{\sqrt {{b^2} - 3{a^2}} }}{3}$.
C. $\dfrac{{\sqrt {9{b^2} - 3{a^2}} }}{3}$.
D. $\dfrac{{\sqrt {{b^2} + 3{a^2}} }}{3}$.
Theo bài ra hình chóp \(S.ABC\) là hình chóp tam giác đều.
Gọi \(H\) là trung điểm của \(BC\), ta có \(SG \bot (ABC),G \in AH\).
Mà \(AH = \dfrac{{a\sqrt 3 }}{2} \Rightarrow AG = \dfrac{2}{3}AH = \dfrac{{a\sqrt 3 }}{3}\).
Tam giác \(SAG\) vuông tại \(G\) nên theo định lý Pi-ta-go ta có :
\(SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {{b^2} - \dfrac{{{a^2}}}{3}} = \sqrt {\dfrac{{3{b^2} - {a^2}}}{3}} = \dfrac{{\sqrt {9{b^2} - 3{a^2}} }}{3}\)
Chọn đáp án C.
Bài 6. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Mặt bên \(SAB\) là tam giác đều có đường cao \(SH\) vuông góc với \(mp(ABCD)\). Gọi \(\alpha \) là góc giữa \(BD\) và \(mp(SAD)\). Chọn khẳng định đúng trong các khẳng định sau?
A. \(\alpha = {60^0}\).
B. \(\alpha = {30^0}\).
C. \(\cos \alpha = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}\).
D. \(\sin \alpha = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}\).
Gọi \(I\) là trung điểm ${\rm{AS}} \Rightarrow {\rm{BI}} \bot {\rm{SA}}$
Ta có: \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot AD\)
Mà \(AD \bot AB\) nên \(AD \bot \left( {SAB} \right) \Rightarrow AD \bot BI\)
Suy ra \(BI \bot (SAD) \Rightarrow \alpha = \widehat {IDB}\)
Ta có: \(BI = \dfrac{{AB\sqrt 3 }}{2},BD = AB\sqrt 2 \Rightarrow \sin \alpha = \dfrac{{BI}}{{BD}} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}\)
Chọn đáp án D.
Bài 7. Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cạnh huyền $BC = a$. Hình chiếu vuông góc của \(S\) lên $\left( {ABC} \right)$ trùng với trung điểm$BC$. Biết $SB = a$. Tính số đo của góc giữa $SA$ và $\left( {ABC} \right)$.
A.\(30^\circ \).
B. \(45^\circ \).
C. \(60^\circ \).
D. \(75^\circ \).
Gọi \(H\) là trung điểm của \(BC\) suy ra
\(AH = BH = CH = \dfrac{1}{2}BC = \dfrac{a}{2}\).
Ta có: \(SH \bot \left( {ABC} \right) \Rightarrow SH = \sqrt {S{B^2} - B{H^2}} = \dfrac{{a\sqrt 3 }}{2}\)
\(\widehat {\left( {SA,\left( {ABC} \right)} \right)} = \widehat {\left( {SA,HA} \right)} = \widehat {SAH} = \alpha \)
$ \Rightarrow \tan \alpha = \dfrac{{SH}}{{AH}} = \sqrt 3 \Rightarrow \alpha = 60^\circ $.
Chọn đáp án C.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK