Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 2. Hệ bất phương trình bậc nhất hai ẩn Bài 15 trang 30 SBT toán 10 Cánh diều: Biểu diễn miền nghiệm của hệ bất phương trình:...

Bài 15 trang 30 SBT toán 10 Cánh diều: Biểu diễn miền nghiệm của hệ bất phương trình:...

Giải bài 15 trang 30 SBT toán 10 - Cánh diều - Bài 2. Hệ bất phương trình bậc nhất hai ẩn

Đề bài :

Biểu diễn miền nghiệm của hệ bất phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{x - 2y \le 3}\\{x + y \ge  - 3}\end{array}} \right.\)              b) \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 5}\\{x - 2y \le 2}\\{x \ge  - 1}\end{array}} \right.\)                        c) \(\left\{ {\begin{array}{*{20}{c}}{ - 3x + 2y < 6}\\{x - 2y \ge  - 2}\\{2x + y < 4}\end{array}} \right.\)

Phương pháp giải :

  • Bước 1: Vẽ đường thẳng \(d:x - 2y = 4\).
  • Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\) không nằm trên d (ta thường lấy gốc tọa độ O nếu \(c \ne 0\). Tính \(a{x_o} + b{y_o}\) và so sánh với c
  • Bước 3: Kết luận
    • Nếu \(a{x_o} + b{y_o} < c\)thì nửa mặt phẳng (không kể đường thẳng d) chứa điểm M là miền nghiệm của bất phương trình \(ax + by < c\)
    • Nếu \(a{x_o} + b{y_o} > c\) thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình \(ax + by > c\)

Lời giải chi tiết :

a) Ta có hai đường thẳng: \({d_1}:x - 2y = 3;{d_2}:x + y =  - 3\)

+) Lấy O(0; 0) không thuộc vào đường thẳng d1 có 0 – 2.0 = 0 < 3. Do đó miền nghiệm của bất phương trình x – 2y ≤ 3 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d1.

+) Lấy O(0; 0) không thuộc đường thẳng d2 có 0 + 0 = 0 > – 3. Do đó miền nghiệm của bất phương trình x + y ≥ – 3 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d2.

Miền nghiệm của hệ bất phương trình là miền không bị gạch như trong hình vẽ sau:

image

b) Ta có b đường thẳng: \({d_1}:x + y = 5;{d_2}:x - 2y = 2;{d_3}:x =  - 1\)

+) Lấy O(0; 0) không thuộc đường thẳng d1 có 0 + 0 = 0 < 5. Do đó miền nghiệm của bất phương trình x + y ≤ 5 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d1.

+) Lấy O(0; 0) không thuộc đường thẳng d2 có 0 – 2.0 = 0 < 2. Do đó miền nghiệm của bất phương trình x – 2y ≤ 2 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d2.

+) Lấy O(0; 0) không thuộc đường thẳng d3 có 0 ≥ – 1. Do đó miền nghiệm của bất phương trình x ≥ – 1 là nửa mặt phẳng chứa điểm O(0; 0) và có bờ là đường thẳng d3.

Miền nghiệm của hệ bất phương trình được biểu diễn là miền màu trắng trong hình vẽ sau:

image

c) Ta có ba đường thẳng: \({d_1}: - 3x + 2y = 6;{d_2}:x - 2y =  - 2;{d_3}:2x + y = 4\)

+) Lấy O(0; 0) không thuộc đường thẳng d1 có – 3.0 + 2.0 = 0 < 6. Do đó miền nghiệm của bất phương trình – 3x + 2y < 6 là nửa mặt phẳng chứa điểm O(0; 0) không kể bờ là đường thẳng d.

+) Lấy O(0; 0) không thuộc đường thẳng d2 có 0 – 2.0 = 0 > – 2 . Do đó miền nghiệm của bất phương trình x – 2y ≥ – 2 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d2.

+) Lấy O(0; 0) không thuộc đường thẳng d3 có 2.0 + 0 < 4. Do đó miền nghiệm của bất phương trình 2x + y < 4 là nửa mặt phẳng chứa điểm O(0; 0) và không kể bờ là đường thẳng d3.

Miền nghiệm của hệ bất phương trình được biểu diễn là miền không tô màu như trong hình vẽ sau:

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK