Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài tập cuối chương 6 Bài 39 trang 48 SBT Toán 10 Cánh Diều: Cho mẫu số liệu: 3 4 6 9 13...

Bài 39 trang 48 SBT Toán 10 Cánh Diều: Cho mẫu số liệu: 3 4 6 9 13...

Giải bài 39 trang 48 sách bài tập toán 10 - Cánh diều - Bài tập cuối chương VI

Đề bài :

Cho mẫu số liệu: 3 4 6 9 13

a) Trung vị của mẫu số liệu trên là:

A. 7              B. 6              C. 6,5           D. 8

b) Số trung bình cộng của mẫu số liệu trên là:

A. 7              B. 6              C. 6,5           D. 8

c) Khoảng biến thiên của mẫu số liệu trên là:

A. 7              B. 6              C. 1              D. 10

d) Tứ phân vị của mẫu số liệu trên là:

A. \({Q_1} = 4;{Q_2} = 6;{Q_3} = 9\)                    B. \({Q_1} = 3,5;{Q_2} = 6;{Q_3} = 9\)           

C. \({Q_1} = 4;{Q_2} = 6;{Q_3} = 11\)                  D. \({Q_1} = 3,5;{Q_2} = 6;{Q_3} = 11\)

e) Khoảng tứ phân vị của mẫu số liệu trên là:

A. 7,5           B. 6              C. 1              D. 10

g) Phương sai của mẫu số liệu trên là:

A. 66            B. 13,2                   C. \(\sqrt {66} \)    D. \(\sqrt {13,2} \)

h) Độ lệch chuẩn của mẫu số liệu trên là:

A. 66            B. 13,2                   C. \(\sqrt {66} \)    D. \(\sqrt {13,2} \)

Phương pháp giải :

- Dùng công thức tính số trung bình: \(\overline x  = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)

- Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)

Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.

Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).

Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

- Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)

- Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Lời giải chi tiết :

3 4 6 9 13

a) Vì \(n = 5\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 6\) là tứ phân vị

Chọn B.

b) Số trung bình của mẫu số liệu là: \(\overline x  = \frac{{3 + 4 + 6 + 9 + 13}}{5} = 7\)

Chọn A.

c) Số cao nhất và thấp nhất lần lượt là 13 và 3 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 13 - 3 = 10\)

Chọn D.

d)

+ Vì \(n = 5\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 6\) là tứ phân vị

+ Tứ phân vị thứ nhất là trung vị của 2 số đầu tiên của mẫu số liệu: \({Q_1} = \left( {3 + 4} \right):2 = 3,5\)

+ Tứ phân vị thứ ba là trung vị của 2 số cuối của mẫu số liệu: \({Q_3} = \left( {9 + 13} \right):2 = 11\)

Chọn D.

e) + Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 11 - 3,5 = 7,5\)

Chọn A.

g) Phương sai: \({S^2} = \frac{1}{5}({3^2} + {4^2} + {6^2} + {9^2} + {13^2}) - {7^2} = 13,2\)

Chọn B.

h) Độ lệch chuẩn: \(S = \sqrt {{S^2}}  = \sqrt {13,2} \)

Chọn D.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK