Trả lời câu hỏi Hoạt động 2 trang 53
Giải các phương trình sau:
a) \({\left( {x - 2} \right)^2} = 0\)
b) \({\left( {x - 1} \right)^2} = 9\)
c) \({\left( {x - 3} \right)^2} = - 1\)
\({x^2} = a(a \ge 0)\)
\(x = a\) hoặc \(x = - a\)
a) \({\left( {x - 2} \right)^2} = 0\)
\(\begin{array}{l}x - 2 = 0\\x = 2\end{array}\)
Vậy phương trình có nghiệm là \(x = 2\).
b) \({\left( {x - 1} \right)^2} = 9\)
\(x - 1 = 3\) hoặc \(x - 1 = - 3\)
\(x = 4\) \(x = - 2\)
Vậy phương trình có nghiệm là \({x_1} = 4;{x_2} = - 2\)
c) \({\left( {x - 3} \right)^2} = - 1\)
Vì \({(x - 3)^2} \ge 0\forall x \in R\) và \( - 1 < 0\) nên phương trình đã cho vô nghiệm.
Trả lời câu hỏi Luyện tập 2 trang 53
Giải phương trình sau: \({\left( {x - 4} \right)^2} = 11\)
\({x^2} = a(a \ge 0)\)
\(x = a\) hoặc \(x = - a\)
\({\left( {x - 4} \right)^2} = 11\)
\(x - 4 = \sqrt {11} \) hoặc \(x - 4 = - \sqrt {11} \)
\(x = 4 + \sqrt {11} \) \(x = 4 - \sqrt {11} \)
Vậy phương trình có nghiệm là \({x_1} = 4 + \sqrt {11} \) và \({x_2} = 4 - \sqrt {11} \).
Trả lời câu hỏi Hoạt động 3 trang 53
Xét phương trình \(2{x^2} - 4x - 16 = 0\) (1)
Chia 2 vế của phương trình (1), ta được phương trình \({x^2} - 2x - 8 = 0\) (2)
a) Tìm số thích hợp cho “?” khi biến đổi phương trình (2) về dạng: ${{\left( x-? \right)}^{2}}=?$.
b) Từ đó, hãy giải phương trình 2.
c) Nêu các nghiệm của phương trình (1).
Viết lại số hạng \(2x = 2.x.1\), phương trình (2) có dạng:
\(\begin{array}{l}{x^2} - 2.x.1 + 1 - 9 = 0\\{\left( {x - 1} \right)^2} = 9\end{array}\)
Sau đó giải phương trình vừa tìm được.
a)
\(\begin{array}{l}{x^2} - 2x - 8 = 0\\\left( {{x^2} - 2.x.1 + 1} \right) - 9 = 0\\{\left( {x - 1} \right)^2} = 9\end{array}\)
Vậy "?” thứ nhất là 1, "?” thứ hai là 9.
b) \({\left( {x - 1} \right)^2} = 9\)
\(x - 1 = 3\) hoặc \(x - 1 = - 3\)
\(x = 4\) \(x = - 2\)
Vậy phương trình có nghiệm là \({x_1} = 4\) và \({x_2} = - 2\)
c) \(2{x^2} - 4x - 16 = 0\)
\(\begin{array}{l}2\left( {{x^2} - 2x - 8} \right) = 0\\{x^2} - 2x - 8 = 0\end{array}\)
Từ phương trình (1) ta đưa được về phương trình (2), nên nghiệm của phương trình (2) chính là nghiệm của phương trình (1) là \({x_1} = 4\) và \({x_2} = - 2\).
Trả lời câu hỏi Luyện tập 3 trang 54
Giải các phương trình:
a)\(3{x^2} - x - 0,5 = 0\)
b)\(4{x^2} + 10x + 15 = 0\)
c)\( - {x^2} + x - \frac{1}{4} = 0\)
Áp dụng công thức nghiệm để giải phương trình với \(\Delta = {b^2} - 4ac\).
Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_1} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)
Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{{2a}}.\)
Nếu \(\Delta = 0\) thì phương trình vô nghiệm.
a)\(3{x^2} - x - 0,5 = 0\)
Phương trình có các hệ số \(a = 3;b = - 1;c = - 0,5\)
\(\Delta = {\left( { - 1} \right)^2} - 4.3.( - 0,5) = 7 > 0\)
Do \(\Delta > 0\) nên phương trình có 2 nghiệm phân biệt là:
\({x_1} = \frac{{ - \left( { - 1} \right) - \sqrt 7 }}{{2.3}} = \frac{{1 - \sqrt 7 }}{6};{x_2} = \frac{{ - \left( { - 1} \right) + \sqrt 7 }}{{2.3}} = \frac{{1 + \sqrt 7 }}{6}\)
b)\(4{x^2} + 10x + 15 = 0\)
Phương trình có các hệ số \(a = 4;b = 10;c = 15\)
\(\Delta = {10^2} - 4.4.15 = - 140 < 0\)
Do \(\Delta < 0\) nên phương trình vô nghiệm.
c)\( - {x^2} + x - \frac{1}{4} = 0\)
Phương trình có các hệ số \(a = - 1;b = 1;c = - \frac{1}{4}\)
\(\Delta = {1^2} - 4.\left( { - 1} \right).( - \frac{1}{4}) = 0\)
Do \(\Delta = 0\) nên phương trình có nghiệm kép là:
\({x_1} = {x_2} = \frac{{ - 1}}{{2.\left( { - 1} \right)}} = \frac{1}{2}\)
Trả lời câu hỏi Hoạt động 4 trang 54
Xét phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) với \(b = 2b’\).
a) Đặt \(\Delta ‘ = b{‘^2} - ac\), chứng tỏ rằng \(\Delta = 4\Delta ‘.\)
b) Xét tính có nghiệm và nêu công thức nghiệm (nếu có) của phương trình trong các trường hợp: \(\Delta ‘ > 0;\Delta ‘ = 0;\Delta ‘ < 0.\)
a) Thay \(b = 2b’\) vào \(\Delta = {b^2} - 4ac\) rồi thu gọn.
b) Xét dấu của \(\Delta \) và \(\Delta ‘\).
a) Thay \(b = 2b’\)vào \(\Delta = {b^2} - 4ac\) ta được:
\(\Delta = {b^2} - 4ac = {(2b’)^2} - 4ac = 4b{‘^2} - 4ac = 4\left( {b{‘^2} - ac} \right) = 4\Delta ‘\) (vì \(\Delta ‘ = b{‘^2} - ac\))
\( \Rightarrow \) đpcm
b) Vì \(\Delta = 4\Delta ‘ \Rightarrow \Delta ‘ = \frac{\Delta }{4}\) nên \(\Delta \) và \(\Delta ‘\)cùng dấu. Vậy:
Nếu \(\Delta ‘ > 0\) thì phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - b’ + \sqrt {\Delta ‘} }}{a};{x_1} = \frac{{ - b’ - \sqrt {\Delta ‘} }}{a}\)
Nếu \(\Delta ‘ = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b’}}{a}.\)
Nếu \(\Delta ‘ = 0\) thì phương trình vô nghiệm.
Trả lời câu hỏi Luyện tập 4 trang 56
Giải các phương trình:
a)\({x^2} - 6x - 5 = 0\)
b)\( - 3{x^2} + 12x - 35 = 0\)
c)\( - 25{x^2} + 30x - 9 = 0\)
Áp dụng công thức nghiệm thu gọn để giải phương trình với \(b = 2b’\) và \(\Delta ‘ = b{‘^2} - ac\).
Nếu \(\Delta ‘ > 0\) thì phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - b’ + \sqrt {\Delta ‘} }}{a};{x_1} = \frac{{ - b’ - \sqrt {\Delta ‘} }}{a}\)
Nếu \(\Delta ‘ = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b’}}{a}.\)
Nếu \(\Delta ‘ = 0\) thì phương trình vô nghiệm.
a)\({x^2} - 6x - 5 = 0\)
Phương trình có các hệ số \(a = 1;b = - 6;c = 5\). Do \(b = - 6\) nên \(b’ = - 3\).
\(\Delta ‘ = {\left( { - 3} \right)^2} - 1.5 = 4 > 0\)
Do \(\Delta ‘ > 0\) nên phương trình có 2 nghiệm phân biệt là:
\({x_1} = \frac{{ - \left( { - 3} \right) - \sqrt 4 }}{1} = 1;{x_2} = \frac{{ - \left( { - 3} \right) + \sqrt 4 }}{1} = 5\)
b)\( - 3{x^2} + 12x - 35 = 0\)
Phương trình có các hệ số \(a = - 3;b = 12;c = - 35\). Do \(b = 12\) nên \(b’ = 6\).
\(\Delta ‘ = {6^2} - \left( { - 3} \right).\left( { - 35} \right) = - 69 < 0\)
Do \(\Delta ‘ < 0\) nên phương trình vô nghiệm.
c)\( - 25{x^2} + 30x - 9 = 0\)
Phương trình có các hệ số \(a = - 25;b = 30;c = - 9\). Do \(b = 30\) nên \(b’ = 15\).
\(\Delta ‘ = {15^2} - \left( { - 25} \right).( - 9) = 0\)
Do \(\Delta ‘ = 0\) nên phương trình có nghiệm kép là: \({x_1} = {x_2} = \frac{{ - 15}}{{ - 25}} = \frac{3}{5}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK