Trả lời câu hỏi Hoạt động 3 trang 108
Cho đường tròn \(\left( {O;R} \right)\). Các đường thẳng \(c,d\) lần lượt tiếp xúc với đường tròn \(\left( {O;R} \right)\) tại \(A,B\) và cắt nhau tại \(M\) (Hình 38).
a) Các tam giác \(MOA\) và \(MOB\) có bằng nhau hay không?
b) Hai đoạn thẳng \(MA\) và \(MB\) có bằng nhau hay không?
c) Tia \(MO\) có phải là tia phân giác của góc \(AMB\) hay không?
d) Tia \(OM\) có phải là tia phân giác của gics \(AOB\) hay không?
Dựa vào tam giác bằng nhau để chứng minh.
a) Do \(MA\) là tiếp tuyến của \(\left( {O;R} \right)\) nên \(MA \bot AO\) suy ra \(\widehat {MAO} = 90^\circ \).
Do \(MB\) là tiếp tuyến của \(\left( {O;R} \right)\) nên \(MB \bot BO\) suy ra \(\widehat {MBO} = 90^\circ \).
Xét tam giác \(MOA\)và tam giác \(MOB\) có:
\(\widehat {MAO} = \widehat {MBO} = 90^\circ \)
\(OA = OB = R\)
\(OM\) chung
\( \Rightarrow \Delta MOA = \Delta MOB\) (cạnh huyền – cạnh góc vuông).
b) Do \(\Delta MOA = \Delta MOB\) nên \(MA = MB\) (2 cạnh tương ứng).
c) Do \(\Delta MOA = \Delta MOB\) nên \(\widehat {AMO} = \widehat {BMO}\) (2 góc tương ứng) suy ra \(MO\) là tia phân giác của góc \(AMB\).
d) Do \(\Delta MOA = \Delta MOB\) nên \(\widehat {MOA} = \widehat {MOB}\) (2 góc tương ứng) suy ra \(OM\) là tia phân giác của góc \(AOB\).
Trả lời câu hỏi Luyện tập 4 trang 109
Cho đường tròn \(\left( {O;R} \right)\) và điểm \(M\) nằm ngoài đường tròn. Hai đường thẳng \(c,d\) qua \(M\) lần lượt tiếp xúc với \(\left( O \right)\) tại \(A,B\) biết \(\widehat {AMB} = 120^\circ \). Chứng minh \(AB = R\).
Dựa vào tính chất 2 tiếp tuyến cắt nhau và tỉ số lượng giác để làm bài toán.
Vì \(MA,MB\) là các tiếp tuyến của \(\left( O \right)\) nên \(\widehat {AMO} = \widehat {BMO} = \frac{{\widehat {AMB}}}{2} = 60^\circ \).
Xét tam giác \(AMO\) vuông tại \(A\) có:
\(\widehat {AMO} + \widehat {MOA} = 90 \Rightarrow 60^\circ + \widehat {MOA} = 90^\circ \Rightarrow \widehat {MOA} = 30^\circ \).
Vì \(MA,MB\) là các tiếp tuyến của \(\left( O \right)\) nên \(\widehat {AOB} = 2\widehat {AOM} = 2.30^\circ = 60^\circ \).
Xét tam giác \(AOB\) có: \(OA = OB = R\) nên tam giác \(AOB\) cân tại \(O\).
Lại có \(\widehat {AOB} = 60^\circ \) suy ra tam giác \(AOB\) là tam giác đều.
Vậy \(AO = OB = AB = R\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK