Cho tam giác \(ABC\) có các đường trung tuyến \(BD\) và \(CE\). Lấy các điểm \(H,K\) sao cho \(E\) là trung điểm của \(CH,D\) là trung điểm của \(BK\). Chứng minh:
a) Các tứ giác \(AHBC,AKCB\) là hình bình hành;
b) \(A\) là trung điểm của \(HK\).
Dựa vào dấu hiệu nhận biết của hình bình hành:
- Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành
- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành
- Tứ giác có hai cặp góc đối bằng nhau là hình bình hành
- Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
a) Tứ giác \(AHBC\) có \(E\) là trung điểm của hai đường chéo \(AB\) và \(CH\) nên \(AHBC\) là hình bình hành.
Tương tự, ta chứng minh được tứ giác \(AKCB\) là hình bình hành.
b) Do \(AHBC\) là hình bình hành nên \(AH//BC\), \(AH = BC\). Tương tự, \(AKCB\) là hình bình hành nên \(AK//BC,AK = BC\). Suy ra ba điểm \(H,A,K\) thẳng hàng và \(AH = AK\). Vậy \(A\) là trung điểm của \(HK\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK