Cho hình thoi ABCD và hình bình hành BCMD. Gọi O là giao điểm của AC và BD. Chứng minh:
a) \(O{\rm{D}} = \frac{1}{2}CM\) và tam giác ACM là tam giác vuông.
b) Ba điểm A, D, M thẳng hàng.
c) Tam giác DCM là tam giác cân
Sử dụng tính chất của hình bình hành BCMD và hình thoi ABCD
- Tính chất hình bình hành
+ Các cạnh đối bằng nhau
+ Các góc đối bằng nhau
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường
- Tính chất hình thoi
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác của các góc trong hình thoi.
a) Vì BCMD là hình bình hành
Suy ra: BD = CM (1)
Mà ABCD là hình thoi
O là giao điểm của AC và BD
\( \Rightarrow O{\rm{D}} = \frac{1}{2}B{\rm{D}}(2)\)
Từ (1) và (2) suy ra: \(O{\rm{D}} = \frac{1}{2}CM\)
Vì BCMD là hình bình hành nên BD // CM (3)
Vì ABCD là hình thoi nên \(B{\rm{D}} \bot AC(4)\)
Từ (3), (4) suy ra: \(AC \bot CM\)
Suy ra: tam giác ACM là tam giác vuông tại C
b) ta có: AD // BC (vì ABCD là hình thoi)
DM // BC (vì DBCM là hình bình hành)
Suy ra A, D, M thẳng hàng
c) Ta có:BC = DC (vì ABCD là hình thoi)
DM = BC (vì DBCM là hình bình hành)
Suy ra: DM = DC
Suy ra tam giác DCM là tam giác cân tại D
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK