Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.
a) Chứng minh BG = GC = CE = BE.
b) Chứng minh ∆ABE = ∆ACE.
c) Nếu \(CG = \frac{1}{2}A{\rm{E}}\)thì tam giác ABC là tam giác gì? Vì sao?
- Chứng minh: GB = GC, EB = EC, BG = BE suy ra BG = GC = BE = CE.
- Chứng minh: \(\Delta ABE = \Delta AC{\rm{E}}(c - c - c)\)
- Nếu \(CG = \frac{1}{2}A{\rm{E}}\) thì chứng minh: tam giác ABC cân có \(\widehat {ACB} = {60^o}\) nên tam giác ABC là tam giác đều.
a) Xét tam giác ABC cân tại A nên AB = AC (hai cạnh bên).
Xét ∆ABD và ∆ACD có:
AB = AC (do ∆ABC cân tại A),
DB = DC (do D là trung điểm của BC),
AD là cạnh chung
Do đó ∆ABD = ∆ACD (c.c.c)
Suy ra \(\widehat {ADB} = \widehat {ADC}\) (hai góc tương ứng).
Mà \(\widehat {ADB} + \widehat {ADC} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {ADB} = \widehat {ADC} = \frac{{180^\circ }}{2} = 90^\circ \)
Suy ra AD vuông góc với BC.
Mặt khác D là trung điểm của BC
Do đó AD là đường trưng trực của đoạn thẳng BC.
Suy ra GB = GC (1)
Lại có điểm E nằm trên đường thẳng AD nên E cũng nằm trên đường trung trực của BC.
Do đó EB = EC (2)
Xét ∆BGD và ∆BED có:
\(\widehat {BDG} = \widehat {BDE}\left( { = 90^\circ } \right)\),
BG là cạnh chung,
DG = DE (giả thiết)
Do đó ∆BGD = ∆BED (hai cạnh góc vuông)
Suy ra BG = BE (3)
Từ (1), (2) và (3) suy ra BG = GC = CE = BE.
Vậy BG = GC = CE = BE.
b) Xét ∆ABE và ∆ACE có:
AB = AC (do ∆ABC cân tại A),
BE = CE (chứng minh câu a),
AE là cạnh chung
Do đó ∆ABE = ∆ACE (c.c.c).
Vậy ∆ABE = ∆ACE.
c) Ta có GD = ED (giả thiết) nên \(G{\rm{D}} = \frac{1}{2}GE\)
Mà G là trọng tâm của tam giác ABC nên \(G{\rm{D}} = \frac{1}{2}AG\).
Do đó AG = GE hay G là trung điểm của AE nên \(GE = \frac{1}{2}A{\rm{E}}\).
Mặt khác \(CG = \frac{1}{2}A{\rm{E}}\)
Suy ra GE = GC.
Theo câu a ta lại có GC = EC.
Khi đó GC = GE = EC.
+) Tam giác CGE có GC = GE = EB nên tam giác CGE là tam giác đều
Do đó \(\widehat {CGE} = 60^\circ \)
Suy ra:
• \(\widehat {CGD} + \widehat {GCD} = 90^\circ \) (tổng hai góc nhọn trong tam giác vuông CGD bằng 90°)
Suy ra \(\widehat {GCD} = 90^\circ - \widehat {CGD} = 90^\circ - 60^\circ = 30^\circ \)
• \(\widehat {CGE} + \widehat {AGC} = 180^\circ \) (hai góc kề bù)
Nên \(\widehat {AGC} = {180^o} - \widehat {CGE} = {180^o} - {60^o} = {120^o}\)
Mà GA = GC nên tam giác AGC cân tại G, do đó \(\widehat {GAC} = \widehat {GCA}\)
Lại có \(\widehat {GAC} + \widehat {GCA} + \widehat {AGC} = 180^\circ \) (tổng ba góc của tam giác AGC).
Do đó \(\widehat {GAC} = \widehat {GCA} = \frac{{180^\circ - \widehat {AGC}}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \)
+) Ta có \(\widehat {ACB} = \widehat {ACG} + \widehat {GCB}\) (hai góc kề nhau)
Hay \(\widehat {ACB} = 30^\circ + 30^\circ = 60^\circ \)
Tam giác cân ABC có \(\widehat {ACB} = 60^\circ \) nên là tam giác đều.
Vậy tam giác ABC đều.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK