Cho tam giác ABC và điểm G nằm trong tam giác. Chứng minh: Nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
- Áp dụng diện tích của ba tam giác GAB, GBC, GCA bằng nhau, hai tam giác bằng nhau để chứng minh AN là đường trung tuyến của tam giác ABC và CG cũng là trung tuyến của tam giác ABC
Gọi N là giao điểm của AG và BC.
Kẻ BH ⊥ AN (H ∈ AN) và CK ⊥ AN (K ∈ AN).
• Ta có:
\({S_{\Delta GAB}} = \frac{{AG.BH}}{2},{S_{\Delta GCA}} = \frac{{AG.CK}}{2}\)
Mà \({S_{\Delta AGB}} = {S_{\Delta AGC}}\) nên \(\frac{{AG.BH}}{2} = \frac{{AG.CK}}{2}\)
Suy ra BH = CK.
•Xét DBHN và DCKN có
\(\widehat {BHN} = \widehat {CKN}\left( { = 90^\circ } \right)\)
BH = CK (chứng minh trên),
\(\widehat {HNB} = \widehat {KNC}\) (hai góc đối đỉnh)
Do đó ∆BHN = ∆CKN (g.c.g)
Suy ra BN = CN (hai cạnh tương ứng)
Hay AN là đường trung tuyến của tam giác ABC.
•Chứng minh tương tự, ta có CG cũng là đường trung tuyến của tam giác ABC.
Tam giác ABC có AN, CG là hai đường trung tuyến cuả tam giác
Mà AN và CG cắt nhau tại G nên G là trọng tâm của tam giác ABC.
Vậy nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK