Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 1 Hàm số lượng giác và phương trình lượng giác Giải mục 2 trang 35, 36 Toán 11 tập 1 - Chân trời sáng tạo: Có giá trị nào của x để \(sinx = 1, 5\)không?...

Giải mục 2 trang 35, 36 Toán 11 tập 1 - Chân trời sáng tạo: Có giá trị nào của x để \(sinx = 1, 5\)không?...

Hướng dẫn cách giải/trả lời Hoạt động 2 , Thực hành 2 mục 2 trang 35, 36 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 5. Phương trình lượng giác cơ bản. Có giá trị nào của x để (sinx = 1, 5)không?...

Câu hỏi:

Hoạt động 2

a) Có giá trị nào của x để \(sinx = 1,5\)không?

b) Trong Hình 1, những điểm nào trên đường tròn lượng giác biểu diễn góc lượng giác x có \(sinx = 0,5\)? Xác định số đo của các góc lượng giác đó.

image

Hướng dẫn giải :

Quan sát hình và dựa vào tính chất \( - 1 \le sinx \le 1\).

Lời giải chi tiết :

a) Với mọi \(x \in \mathbb{R}\), ta có: \( - 1 \le sinx \le 1\)

Do đó không có giá trị nào của x để \(sinx = 1,5\).

b) Những điểm biểu diễn góc lượng giác có \(sinx = 0,5\) là M và N.

Điểm M biểu diễn cho các góc lượng giác có số đo là \(\frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}.\)

Điểm N biểu diễn cho các góc lượng giác có số đo là \(\frac{{5\pi }}{6} + k2\pi ,k \in \mathbb{Z}.\)


Câu hỏi:

Thực hành 2

Giải các phương trình sau:

\(\begin{array}{l}a)\;sinx = \frac{{\sqrt 3 }}{2}\\b)\;sin(x + {30^o}) = sin(x + {60^o})\end{array}\)

Hướng dẫn giải :

Nếu \(\left| m \right| \le 1\) thì phương trình:

  • \({\mathop{\rm s}\nolimits} {\rm{inx}} = m \Leftrightarrow \sin x = \sin \alpha \)\( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
  • \(\sin x = \sin {\alpha ^o} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^o} + k{360^o}\\x = {180^o} - {\alpha ^o} + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết :

\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)

Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).

\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)

Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK