Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 1 Hàm số lượng giác và phương trình lượng giác Lý thuyết Phương trình lượng giác cơ bản - Toán 11 Chân trời sáng tạo: Phương trình tương đương - Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm...

Lý thuyết Phương trình lượng giác cơ bản - Toán 11 Chân trời sáng tạo: Phương trình tương đương - Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm...

Hướng dẫn cách giải/trả lời lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Chân trời sáng tạo Bài 5. Phương trình lượng giác cơ bản. Phương trình tương đương...

1. Phương trình tương đương

- Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.

- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết \(f(x) = 0 \Leftrightarrow g(x) = 0\)

- Các phép biến đổi tương đương:

+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.

+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.

2. Phương trình \({\mathop{\rm s}\nolimits} {\rm{inx}} = m\)

Phương trình sinx = m ,

  • Nếu \(\left| m \right| \le 1\) thì phương trình vô nghiệm.
  • Nếu \(\left| m \right| \le 1\) thì phương trình có nghiệm:

Khi đó, tồn tại duy nhất \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thoả mãn \(\sin \alpha = m\),

\({\mathop{\rm s}\nolimits} {\rm{inx}} = m \Leftrightarrow \sin x = \sin \alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

* Chú ý:

a, Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì \(\sin x = \sin {\alpha ^o} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^o} + k{360^o}\\x = {180^o} - {\alpha ^o} + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b,Một số trường hợp đặc biệt

\(\begin{array}{l}\sin x = 0 \Leftrightarrow x = k\pi ,k \in \mathbb{Z}.\\\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\\\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\end{array}\)

3. Phương trình \({\rm{cosx}} = m\)

Phương trình \({\rm{cosx}} = m\),

  • Nếu \(\left| m \right| \le 1\) thì phương trình vô nghiệm.
  • Nếu \(\left| m \right| \le 1\) thì phương trình có nghiệm:

Khi \(\left| m \right| \le 1\)sẽ tồn tại duy nhất \(\alpha \in \left[ {0;\pi } \right]\) thoả mãn \({\rm{cos}}\alpha = m\). Khi đó:

\({\rm{cosx}} = m \Leftrightarrow {\rm{cosx}} = {\rm{cos}}\alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

* Chú ý:

a, Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì \(\cos x = \cos {\alpha ^o} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^o} + k{360^o}\\x = - {\alpha ^o} + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b, Một số trường hợp đặc biệt

\(\begin{array}{l}{\rm{cos}}x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\\{\rm{cos}}x = 1 \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}.\\{\rm{cos}}x = - 1 \Leftrightarrow x = \pi + k2\pi ,k \in \mathbb{Z}.\end{array}\)

4. Phương trình \(\tan x = m\)

Phương trình \(\tan x = m\) có nghiệm với mọi m.

Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\). Khi đó:

\(\tan {\rm{x}} = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)

*Chú ý: Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì

\(\tan x = \tan {\alpha ^o} \Leftrightarrow x = {\alpha ^o} + k{180^o},k \in \mathbb{Z}.\)

5. Phương trình \(\cot x = m\)

Phương trình \(\cot x = m\) có nghiệm với mọi m.

Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( {0;\pi } \right)\) thoả mãn \(\cot \alpha = m\). Khi đó:

\(\cot {\rm{x}} = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)

*Chú ý: Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì

\(\cot x = \cot {\alpha ^o} \Leftrightarrow x = {\alpha ^o} + k{180^o},k \in \mathbb{Z}.\)

6. Giải phương trình lượng giác bằng máy tính cầm tay

Bước 1. Chọn đơn vị đo góc (độ hoặc radian).

Muốn tìm số đo độ, ta ấn: SHIFT \( \to \)MODE \( \to \)3 (CASIO FX570VN).

Muốn tìm số đo radian, ta ấn: SHIFT \( \to \)MODE \( \to \)4 (CASIO FX570VN).

Bước 2. Tìm số đo góc.

Khi biết SIN, COS, TANG của góc \(\alpha \)ta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc \(\alpha \).

image

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK