Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Chương 6. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn Giải mục 2 trang 20 Toán 9 tập 2 - Chân trời sáng tạo: Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15...

Giải mục 2 trang 20 Toán 9 tập 2 - Chân trời sáng tạo: Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15...

Lời giải bài tập, câu hỏi HĐ2, TH4, VD mục 2 trang 20 SGK Toán 9 tập 2 - Chân trời sáng tạo - Bài 3. Định lí Viète. Cho hai số u và v có tổng u + v = 8 và tích uv = 15. a) Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15... Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15

Câu hỏi:

Hoạt động2

Trả lời câu hỏi Hoạt động 2 trang 20

Cho hai số u và v có tổng u + v = 8 và tích uv = 15.

a) Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15, ta nhận được phương trình ẩn v nào?

b) Nếu biểu diễn v theo u thì nhận được phương trình ẩn u nào?

Hướng dẫn giải :

Đọc kĩ dữ kiện đề bài và làm theo.

Lời giải chi tiết :

a) Từ u + v = 8 suy ra u = 8 – v thay vào uv = 15 ta được phương trình ẩn v là:

(8 – v).v = 15 hay 8v – v2 = 15.

b) Từ u + v = 8 suy ra v = 8 – u thay vào uv = 15 ta được phương trình ẩn u là:

u.(8 – u) = 15 hay 8u – u2 = 15.


Câu hỏi:

Thực hành4

Trả lời câu hỏi Thực hành 4 trang 20

a) Tìm hai số, biết tổng của chúng bằng 15 và tích của chúng bằng 44.

b) Có tồn tại hai số a và b có tổng bằng 7 và tích bằng 13 không?

Hướng dẫn giải :

Dựa vào: a) Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\)

b) Điều kiện để có hai số đó là \({S^2} - 4P \ge 0\).

Lời giải chi tiết :

a) Hai số cần tìm là nghiệm của phương trình \({x^2} - 15x + 44 = 0\).

Ta có: \(\Delta = {\left( { - 15} \right)^2} - 4.1.44 = 49 > 0;\sqrt \Delta = \sqrt {49} = 7\);

\({x_1} = \frac{{15 + 7}}{2} = 11;{x_2} = \frac{{15 - 7}}{2} = 4\)

Vậy hai số cần tìm là 11 và 4.

b) Để tồn tại hai số a và b phải thỏa mãn \({S^2} - 4P \ge 0\)

Ta có \({7^2} - 4.13 = - 3 < 0\) suy ra không tồn tại hai số a và b có tổng bằng 7 và tích bằng 13.


Câu hỏi:

Vận dụng

Trả lời câu hỏi Vận dụng trang 20

Tìm chiều dài và chiều rộng trong Hoạt động khởi động (trang 18).

Khu vườn nhà kính hình chữ nhật của bác Thanh có nửa chu vi là 60 m, diện tích 884 m2. Làm thế nào để tính chiều dài và chiều rộng của khu vườn?

Hướng dẫn giải :

Gọi ẩn \({x_1},{x_2}\) lần lượt là chiều dài và chiều rộng của khu vườn.

Lập phương trình ẩn \({x_1},{x_2}\) theo chu vi và diện tích.

Dựa vào: Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) tìm chiều dài và chiều rộng.

Lời giải chi tiết :

Gọi \({x_1},{x_2}\) lần lượt là chiều dài và chiều rộng của khu vườn.

Nửa chu vi là 60 m hay \({x_1} + {x_2} = 60\).

Diện tích 884 m2 hay \({x_1}.{x_2} = 884\)

\({x_1},{x_2}\) là nghiệm của phương trình \({x^2} - 60x + 884 = 0\)

Ta có \(\Delta = {\left( { - 60} \right)^2} - 4.1.884 = 64 > 0;\sqrt \Delta = \sqrt {64} = 8\);

\({x_1} = \frac{{60 + 8}}{2} = 34;{x_2} = \frac{{60 - 8}}{2} = 26\).

Vậy chiều dài khu vườn là 34 m và chiều rộng là 26 m.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK