1. Phương trình tích
Phương trình tích là phương trình có dạng \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\).
Cách giải phương trình tích
Muốn giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\), rồi lấy tất cả các nghiệm của chúng. |
Ví dụ:Giải phương trình \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)
Lời giải:
Ta có: \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)
\(2x + 1 = 0\) hoặc \(3x - 1 = 0\).
\(2x = - 1\) hoặc \(3x = 1\)
\(x = - \frac{1}{2}\) hoặc \(x = \frac{1}{3}\)
Vậy phương trình đã cho có hai nghiệm là \(x = - \frac{1}{2}\) và \(x = \frac{1}{3}\).
Các bước giải phương trình:
Bước 1. Đưa phương trình về phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\). Bước 2. Giải phương trình tích tìm được. |
Ví dụ: Giải phương trình \({x^2} - x = - 2x + 2\).
Lời giải:
Biến đổi phương trình đã cho về phương trình tích như sau:
\(\begin{array}{l}{x^2} - x = - 2x + 2\\{x^2} - x + 2x - 2 = 0\\x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\\\left( {x + 2} \right)\left( {x - 1} \right) = 0.\end{array}\)
\(x + 2 = 0\) hoặc \(x - 1 = 0\).
\(x = - 2\) hoặc \(x = 1\).
Vậy phương trình đã cho có hai nghiệm là \(x = - 2\) và \(x = 1\).
2. Phương trình chứa ẩn ở mẫu quy về phương trình bậc nhất
Điều kiện xác định của phương trình chứa ẩn ở mẫu
Đối với phương trình chứa ẩn ở mẫu, điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0 gọi là điều kiện xác định của phương trình. |
Ví dụ:
- Phương trình \(\frac{{5x + 2}}{{x - 1}} = 0\) có điều kiện xác định là \(x \ne 1\) vì \(x - 1 \ne 0\) khi \(x \ne 1\).
- Phương trình \(\frac{1}{{x + 1}} = 1 + \frac{1}{{x - 2}}\) có điều kiện xác định là \(x \ne - 1\) và \(x \ne 2\) vì \(x + 1 \ne 0\) khi \(x \ne - 1\), \(x - 2 \ne 0\) khi \(x \ne 2\).
Các bước giải phương trình chứa ẩn ở mẫu
Bước 1. Tìm điều kiện xác định của phương trình. Bước 2. Quy đồng mẫu thức hai vế của phương trình, rồi khử mẫu. Bước 3. Giải phương trình vừa tìm được. Bước 4. Xét mỗi giá trị tìm được ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. |
Ví dụ: Giải phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)
Lời giải:
Điều kiện xác định \(x \ne - 1\) và \(x \ne 2\).
Ta có: \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)
\(\frac{{2\left( {x - 2} \right) + \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)
\(2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\)
\(\begin{array}{l}2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\\2x - 4 + x + 1 = 3\\3x - 3 = 3\\3x = 6\\x = 2\end{array}\)
Giá trị \(x = 2\) không thỏa mãn ĐKXĐ.
Vậy phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\) vô nghiệm.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK