Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Chương 2. Vectơ và hệ trục tọa độ trong không gian Giải mục 3 trang 52, 53, 54 Toán 12 tập 1 - Kết nối tri thức: Hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {B’C’} \) có cùng phương không? Có cùng hướng không?...

Giải mục 3 trang 52, 53, 54 Toán 12 tập 1 - Kết nối tri thức: Hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {B’C’} \) có cùng phương không? Có cùng hướng không?...

. Hướng dẫn giải HĐ6, CH, LT7, LT8, VD8 mục 3 trang 52, 53, 54 SGK Toán 12 tập 1 - Kết nối tri thức Bài 6. Vectơ trong không gian. Tích của một số với một vectơ trong không gian... Hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {B’C’} \) có cùng phương không? Có cùng hướng không?

Câu hỏi:

Hoạt động6

Trả lời câu hỏi Hoạt động 6 trang 52 SGK Toán 12 Kết nối tri thức

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N lần lượt là trung điểm của AB, AC (H.2.17)

image

a) Hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {B’C’} \) có cùng phương không? Có cùng hướng không?

b) Giải thích vì sao \(\left| {\overrightarrow {MN} } \right| = \frac{1}{2}\left| {\overrightarrow {B’C’} } \right|\).

Hướng dẫn giải :

a) Sử dụng kiến thức về hai vectơ cùng phương để chứng minh: Hai vectơ được gọi là cùng phương nếu chúng có giá song song hoặc trùng nhau.

b) Sử dụng kiến thức về độ dài của vectơ trong không gian để chứng minh: Độ dài của vectơ trong không gian là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó. Độ dài của vectơ \(\overrightarrow a \) được kí hiệu là \(\left| {\overrightarrow a } \right|\).

Lời giải chi tiết :

a) Vì MN là đường trung bình của tam giác ABC nên MN//BC.

Vì BCC’B’ là hình bình hành nên BC//B’C’. Suy ra: MN//B’C’.

Do đó hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {B’C’} \) có cùng phương và cùng hướng.

b) Vì BCC’B’ là hình bình hành nên \(BC = B’C’\)

Vì MN là đường trung bình của tam giác ABC nên \(MN = \frac{1}{2}BC\)

Suy ra: \(\left| {\overrightarrow {MN} } \right| = \frac{1}{2}\left| {\overrightarrow {B’C’} } \right|\).


Câu hỏi:

Câu hỏi

Trả lời câu hỏi Câu hỏi trang 53 SGK Toán 12 Kết nối tri thức

Hai vectơ \(1\overrightarrow a \) và \(\overrightarrow a \) có bằng nhau không? Hai vectơ \(\left( { - 1} \right)\overrightarrow a \) và \( - \overrightarrow a \) có bằng nhau không?

Hướng dẫn giải :

Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết :

Hai vectơ \(1\overrightarrow a \) và \(\overrightarrow a \) bằng nhau vì chúng có cùng độ dài và cùng hướng.

Hai vectơ \(\left( { - 1} \right)\overrightarrow a \) và \( - \overrightarrow a \) bằng nhau chúng có cùng độ dài và cùng hướng.


Câu hỏi:

Luyện tập7

Trả lời câu hỏi Luyện tập 7 trang 53SGK Toán 12 Kết nối tri thức

Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là các điểm thuộc các cạnh SA, SB sao cho \(SE = \frac{1}{3}SA,SF = \frac{1}{3}SB\). Chứng minh rằng \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {DC} \).

Hướng dẫn giải :

+ Sử dụng kiến thức về khái niệm tích của một số với một vectơ trong không gian để chứng minh: Trong không gian, tích của một số thực \(k \ne 0\) với một vectơ \(\overrightarrow a \ne \overrightarrow 0 \) là một vectơ, kí hiệu là \(k\overrightarrow a \) được xác định như sau:

- Cùng hướng với vectơ \(\overrightarrow a \) nếu \(k > 0\), ngược hướng với vectơ \(\overrightarrow a \) nếu \(k < 0\).

- Có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\).

+ Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết :

image

Vì \(SE = \frac{1}{3}SA,SF = \frac{1}{3}SB \Rightarrow \frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\left( { = \frac{1}{3}} \right)\)

Tam giác SAB có: \(\frac{{SE}}{{SA}} = \frac{{SF}}{{SB}}\) nên FE//AB và \(EF = \frac{1}{3}AB\).

Vì hai vectơ \(\overrightarrow {EF} \) và \(\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AB} \) (1)

Vì ABCD là hình bình hành nên \(AB = CD\) và AB//CD. Do đó, \(\overrightarrow {AB} = \overrightarrow {DC} \) (2)

Từ (1) và (2) ta có: \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {DC} \)


Câu hỏi:

Luyện tập8

Trả lời câu hỏi Luyện tập 8 trang 54SGK Toán 12 Kết nối tri thức

Trong Ví dụ 8, gọi I là điểm thuộc đoạn thẳng AG sao cho \(\overrightarrow {AI} = 3\overrightarrow {IG} \) (H.2.19). Chứng minh rằng \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} = \overrightarrow 0 \).

Hướng dẫn giải :

Sử dụng kiến thức về khái niệm tích của một số với một vectơ trong không gian để chứng minh: Trong không gian, tích của một số thực \(k \ne 0\) với một vectơ \(\overrightarrow a \ne \overrightarrow 0 \) là một vectơ, kí hiệu là \(k\overrightarrow a \) được xác định như sau:

- Cùng hướng với vectơ \(\overrightarrow a \) nếu \(k > 0\), ngược hướng với vectơ \(\overrightarrow a \) nếu \(k < 0\).

- Có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\).

Lời giải chi tiết :

image

Theo ví dụ 8 ta có: \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \)\( \Rightarrow \overrightarrow {AI} + \overrightarrow {IB} + \overrightarrow {AI} + \overrightarrow {IC} + \overrightarrow {AI} + \overrightarrow {ID} = 3\overrightarrow {AG} \)

\( \Rightarrow \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} = 3\overrightarrow {AG} - 3\overrightarrow {AI} = 3\left( {\overrightarrow {AG} + \overrightarrow {IA} } \right) = 3\overrightarrow {IG} = \overrightarrow {AI} \)\( \Rightarrow \overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} = \overrightarrow 0 \)


Câu hỏi:

Vận dụng8

Trả lời câu hỏi Vận dụng 8 trang 54SGK Toán 12 Kết nối tri thức

Khi chuyển động trong không gian, máy bay luôn chịu tác động của bốn lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học (H.2.20). Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900km/h lên 920km/h, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900km/h và 920km/h lần lượt được biểu diễn bởi hai vectơ \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \). Hãy giải thích vì sao \(\overrightarrow {{F_1}} = k\overrightarrow {{F_2}} \) với k là một số thực dương nào đó. Tính giá trị của k (làm tròn kết quả đến chữ số thập phân thứ hai).

image

Hướng dẫn giải :

Sử dụng kiến thức về khái niệm tích của một số với một vectơ trong không gian để giải bài toán: Trong không gian, tích của một số thực \(k \ne 0\) với một vectơ \(\overrightarrow a \ne \overrightarrow 0 \) là một vectơ, kí hiệu là \(k\overrightarrow a \) được xác định như sau:

- Cùng hướng với vectơ \(\overrightarrow a \) nếu \(k > 0\), ngược hướng với vectơ \(\overrightarrow a \) nếu \(k < 0\).

- Có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\).

Lời giải chi tiết :

Vì trong quá trình máy bay tăng vận tốc từ 900km/h lên 920km/h máy bay giữ nguyên hướng bay nên vectơ \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) có cùng hướng. Do đó, \(\overrightarrow {{F_1}} = k\overrightarrow {{F_2}} \) với k là một số thực dương nào đó (1).

Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt 900km/h và 920km/h.

Suy ra \({v_1} = 900\left( {km/h} \right),{v_2} = 920\left( {km/h} \right)\)

Vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên

\(\frac{{\left| {\overrightarrow {{F_1}} } \right|}}{{\left| {\overrightarrow {{F_2}} } \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {\overrightarrow {{F_1}} } \right| = \frac{{2025}}{{2116}}\left| {\overrightarrow {{F_2}} } \right|\) (2)

Từ (1) và (2) ta có: \(\overrightarrow {{F_1}} = \frac{{2025}}{{2116}}\overrightarrow {{F_2}} \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK