Giải câu hỏi Hoạt động trang 68SGK Toán 9
Vẽ đường tròn tâm O có bán kính bằng 2cm và dây cung AB có độ dài bằng 2cm. Lấy một điểm C tùy ý nằm trên cung lớn AmB (H.9.2).
a) Cho biết số đo góc ở tâm AOB và số đo của cung bị chắn AB.
b) Đo góc ACB và so sánh với kết quả của bạn bên cạnh.
c) Lấy điểm D tùy ý nằm trên cung ACB. Đo góc ADB và so sánh với các góc ACB và AOB.
a) Chứng minh tam giác AOB đều, suy ra \(\widehat {AOB} = {60^o}\). Do đó, \(sđ\overset\frown{AB}=\widehat{AOB}={{60}^{o}}\) (góc ở tâm chắn cung AB).
b, c) Sử dụng thước đo góc đo được góc ACB, góc ADB đều bằng 30 độ. Do đó, \(\widehat {ACB} = \widehat {ADB}\)
Vì A, B thuộc đường tròn tâm O nên \(OA = OB = 2cm\).
Tam giác AOB có: \(OA = OB = AB = 2cm\) nên tam giác ABO đều.
Do đó, \(\widehat {AOB} = {60^o}\).
Suy ra: \(sđ\overset\frown{AB}=\widehat{AOB}={{60}^{o}}\) (góc ở tâm chắn cung AB).
b) Sử dụng thước đo góc, ta đo được \(\widehat {ACB} = {30^o}\).
c) Sử dụng thước đo góc, ta đo được \(\widehat {ADB} = {30^o}\). Do đó, \(\widehat {ACB} = \widehat {ADB}\).
Trả lời câu hỏi Câu hỏi trang 70 SGK Toán 9
Hãy cho biết số đo góc nội tiếp tìm được trong Hình 9.3 ở Ví dụ 1, biết rằng số đo của các cung màu xanh trong hình đều bằng \({120^o}\).
Vì B là góc nội tiếp trong đường tròn nên có số đo bằng nửa số đo cung bị chắn, từ đó tính được góc B.
Vì B là góc nội tiếp trong đường tròn nên \(\widehat B = \frac{1}{2}{.120^o} = {60^o}\).
Hướng dẫn giải câu hỏi Luyện tập trang 70 SGK Toán 9
Cho đường tròn tâm O và hai dây cung AB, CD cắt nhau tại điểm X nằm trong đường tròn (H.9.6). Chứng minh rằng $\Delta AXC\backsim \Delta DXB$.
+ Sử dụng định lý về mối quan hệ giữa góc nội tiếp và cung bị chắn để chứng minh \(\widehat {ACX} = \widehat {XBD}\).
+ Chứng minh $\Delta AXC\backsim \Delta DXB$ theo trường hợp góc – góc.
Vì góc ACX và góc XBD là góc nội tiếp cùng chắn cung AD của đường tròn tâm O nên: \(\widehat {ACX} = \widehat {XBD}\).
Tam giác AXC và tam giác DXB có: \(\widehat {ACX} = \widehat {XBD}\) (cmt), \(\widehat {AXC} = \widehat {BXD}\) (hai góc đối đỉnh).
Do đó, $\Delta AXC\backsim \Delta DXB$ (g – g).
Hướng dẫn giải câu hỏi Vận dụng trang 70SGK Toán 9
Trở lại tình huống mở đầu, hãy tính số đo của góc BAC nếu đường tròn có bán kính 2cm và dây cung \(BC = 2\sqrt 2 cm\).
Chúng ta đã biết số đo góc ở tâm BOC của đường tròn (O) trong Hình 9.1 bằng số đo của cung bị chắn.
+ Theo định lý Pythagore đảo chứng minh được tam giác BOC vuông tại O, tính được góc BOC.
+ Vì góc BOC và góc BAC lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC của đường tròn (O) nên \(\widehat {BAC} = \frac{1}{2}\widehat {BOC}\).
Vì B, C thuộc đường tròn (O) nên \(OB = OC = 2cm\).
Xét tam giác BOC có: \(O{B^2} + O{C^2} = B{C^2}\left( {do\;{2^2} + {2^2} = {{\left( {2\sqrt 2 } \right)}^2}} \right)\) nên tam giác BOC vuông tại O (định lý Pythagore đảo).
Suy ra, \(\widehat {BOC} = {90^o}\)
Vì góc BOC và góc BAC lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC của đường tròn (O) nên \(\widehat {BAC} = \frac{1}{2}\widehat {BOC} = \frac{1}{2}{.90^o} = {45^o}\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK