Giải các hệ phương trình sau bằng phương pháp cộng đại số;
a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}0,5x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)
c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y = - 12.\end{array} \right.\)
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Trong trường hợp hệ phương trình đã cho không có hai hệ số của cùng 1 ẩn bằng nhau hoặc đối nhau thì ta có thể nhân 2 vế của mỗi phương trình với một số thích hợp khác 0.
a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)
Cộng từng vế của hai phương trình ta có \(\left( {3x + 2y} \right) + \left( {2x - 2y} \right) = 6 + 14\) nên \(5x = 20\) suy ra \(x = 4.\)
Thế \(x = 4\) vào phương trình thứ nhất ta được \(3.4 + 2y = 6\) nên \(2y = - 6\) suy ra \(y = - 3.\)
Vậy nghiệm của hệ phương trình là \(\left( {4; - 3} \right)\).
b) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)
Nhân cả hai vế của phương trình thứ nhất với 5 ta được \(1,5x + 2,5y = 15,\) vậy hệ đã cho trở thành \(\left\{ \begin{array}{l}1,5x + 2,5y = 15\\1,5x - 2y = 1,5;\end{array} \right.\)
Trừ từng vế của hai phương trình ta có \(\left( {1,5x + 2,5y} \right) - \left( {1,5x - 2y} \right) = 15 - 1,5\) nên \(4,5y = 13,5\) suy ra \(y = 3.\)
Thế \(y = 3\) vào phương trình thứ hai ta được \(1,5x - 2.3 = 1,5\) nên \(1,5x = 7,5\) suy ra \(x = 5.\)
Vậy nghiệm của hệ phương trình là \(\left( 5;3 \right)\).
c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y = - 12.\end{array} \right.\)
Nhân cả hai vế của phương trình thứ nhất với \(\frac{1}{2}\) ta được \( - x + 3y = 4,\) nhân cả hai vế của phương trình thứ hai với \(\frac{1}{3}\) ta được \(x - 3y = - 4.\)
Vậy hệ đã cho trở thành \(\left\{ \begin{array}{l} - x + 3y = 4\\x - 3y = - 4\end{array} \right.\)
Cộng từng vế của hai phương trình ta có \(\left( { - x + 3y} \right) + \left( {x - 3y} \right) = 4 + \left( { - 4} \right)\) nên \(0x + 0y = 0\) (luôn đúng).
Ta thấy phương trình luôn đúng với x tùy ý và y tùy ý. Với giá trị tùy ý của y, giá trị của x được tính bởi phương trình \( - x + 3y = 4,\) suy ra \(x = 3y - 4\) nên hệ phương trình đã cho có nghiệm \(\left( {3y - 4;y} \right)\) với \(y \in \mathbb{R}\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK