Cho các cặp số \(\left( { - 2;1} \right),\left( {0;2} \right),\left( {1;0} \right),\left( {1,5;3} \right),\left( {4; - 3} \right)\) và hai phương trình
\(\begin{array}{l}5x + 4y = 8,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\3x + 5y = - 3.\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)
Trong các cặp số đã cho:
a) Những cặp số nào là nghiệm của phương trình (1)?
b) Cặp số nào là nghiệm của hệ hai phương trình gồm (1) và (2)?
c) Vẽ hai đường thẳng \(5x + 4y = 8\) và \(3x + 5y = - 3\) trên cùng một mặt phẳng tọa độ để minh họa kết luận ở câu b.
Để kiểm tra cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của phương trình bậc nhất hai ẩn, ta thay \(x - = {x_0};y = {y_0}\) vào phương trình cần kiểm tra, nếu kết quả luôn đúng ta được cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của phương trình bậc nhất hai ẩn.
a) Thay \(\left( { - 2;1} \right)\) vào phương trình (1) ta có: \(5.\left( { - 2} \right) + 4.1 = -6 \ne 8\)
Thay \(\left( {0;2} \right)\) vào phương trình (1) ta có: \(5.0 + 4.2 = 8\)
Thay \(\left( {1;0} \right)\) vào phương trình (1) ta có: \(5.1 + 4.0 = 5 \ne 8\)
Thay \(\left( {1,5;3} \right)\) vào phương trình (1) ta có: \(5.1,5 + 4.3 = 19,5 \ne 8\)
Thay \(\left( {4; - 3} \right)\) vào phương trình (1) ta có: \(5.4 + 4.\left( { - 3} \right) = 8\) (luôn đúng)
Vậy nghiệm của phương trình (1) là \(\left( {0;2} \right)\) và \(\left( {4; - 3} \right).\)
b) Vì \(\left( { - 2;1} \right)\), \(\left( {1;0} \right)\) và \(\left( {1,5;3} \right)\) không là nghiệm của phương trình (1) nên cũng không là nghiệm của hệ phương trình gồm (1) và (2).
Thay \(\left( {0;2} \right)\) vào phương trình (2) ta có: \(3.0 + 5.2 = 10 \ne - 3\).
Thay \(\left( {4; - 3} \right)\) vào phương trình (2) ta có: \(3.4 + 5.\left( { - 3} \right) = - 3\) (luôn đúng).
Vậy \(\left( {4; - 3} \right)\) là nghiệm của hệ phương trình gồm (1) và (2).
c) Đường thẳng \(5x + 4y = 8\)
Cho \(x = 0 \Rightarrow y = 2 \Rightarrow A\left( {0;2} \right)\)
\(y = 0 \Rightarrow x = \frac{8}{5} \Rightarrow B\left( {\frac{8}{5};0} \right)\)
Đường thẳng \(5x + 4y = 8\) đi qua điểm A và B
Đường thẳng \(3x + 5y = - 3\)
Cho \(x = 0 \Rightarrow y = \frac{{ - 3}}{5} \Rightarrow C\left( {0;\frac{{ - 3}}{5}} \right)\)
\(y = 0 \Rightarrow x = - 1 \Rightarrow D\left( { - 1;0} \right)\)
Đường thẳng \(3x + 5y = - 3\) đi qua điểm C và D
Ta có điểm \(E\left( {4; - 3} \right)\) là giao điểm của đường thẳng \(5x + 4y = 8\) và đường thẳng \(3x + 5y = - 3\) nên \(\left( {4; - 3} \right)\) là nghiệm của hệ phương trình gồm (1) và (2)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK