Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a và điểm A’ cách đều các điểm A, B, C. Biết AA’ = 2a, tính thể tích khối lăng trụ này.
Công thức tính thể tích hình lăng trụ: V = S.h với S là diện tích đáy, h là chiều cao.
Gọi D là trung điểm của AC, G là trọng tâm tam giác ABC
A’.ABC là chóp tam giác đều nên A’G vuông góc với (ABC). Suy ra A’G là chiều cao của hình lăng trụ
Tam giác ABC đều có cạnh bằng a nên BD vuông góc với AC
Ta có: \(BD = \sqrt {A{B^2} - A{D^2}} = \sqrt {{a^2} - {{\left( {\frac{1}{2}a} \right)}^2}} = \frac{{\sqrt 3 }}{2}a\)
\(BG = \frac{2}{3}BD = \frac{{\sqrt 3 }}{3}a\)
Xét tam giác vuông A’BG vuông tại G có:
\(A’G = \sqrt {A'{B^2} - B{G^2}} = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {\frac{{\sqrt 3 }}{3}a} \right)}^2}} = \frac{{\sqrt {33} }}{3}a\)
\(V = S.h = \frac{1}{2}.BD.AC.A’G = \frac{1}{2}.\frac{{\sqrt 3 }}{2}a.a.\frac{{\sqrt {33} }}{3}a = \frac{{\sqrt {11} }}{4}{a^3}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK