Viết công thức tính thể tích khối chóp tam giác đều (Hình 8.72) và khối chóp tứ giác đều (Hình 8.73) theo diện tích đáy S và chiều cao h của chúng.
\(V = \frac{1}{3}S.h\)
Công thức tính thể tích khối chóp: \(V = \frac{1}{3}S.h\)
Cho hình chóp S.ABCD có đáy ABCD hình thoi cạnh a, \(\widehat {ABC} = {60^0}\), SB = a. Hình chiếu của S trên (ABCD) là giao điểm hai đường chéo của hình thoi ABCD. Tính thể tích khối chóp này.
Hình thoi có 2 đường chéo vuông góc với nhau.
Áp dụng công thức tính thể tích hình chóp: \(V = \frac{1}{3}S.h\)
ABCD là hình thoi có cạnh bằng a. Mà \(\widehat {ABC} = {60^0}\) nên AC = a
AC và BD vuông góc với nhau tại O, ta có: \(BO = \sqrt {A{B^2} - A{O^2}} = \sqrt {{a^2} - {{\left( {\frac{1}{2}a} \right)}^2}} = \frac{{\sqrt 3 }}{2}a\)
\( \Rightarrow BD = \sqrt 3 a\)
O là hình chiếu của S trên (ABCD) nên SO vuông góc với (ABCD)
Suy ra SO vuông góc với BD nên tam giác SOB vuông tại O
\( \Rightarrow SO = \sqrt {S{B^2} - B{O^2}} = \sqrt {{a^2} - {{\left( {\frac{{\sqrt 3 }}{2}a} \right)}^2}} = \frac{1}{2}a\)
\(\begin{array}{l} \Rightarrow V = \frac{1}{3}S.h = \frac{1}{3}.\frac{1}{2}AC.BD.SO = \frac{1}{6}.a.\sqrt 3 a.\frac{1}{2}a\\ = \frac{{\sqrt 3 }}{{12}}{a^3}\end{array}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK