Cho hàm số \(f(x) = \frac{{{x^2}}}{4}\) có đồ thị là đường parabol (P) như Hình 7.4 . Gọi M là điểm thuộc (P) có hoành độ \({x_0} = 2\).
a, Tính \({f’}(2)\)
b, Viết phương trình đường thẳng \(\Delta \) đi qua điểm M và có hệ số góc bằng \({f’}(2)\)
c, Vẽ đường thẳng \(\Delta \) và (P) trên cùng một mặt phẳng tọa độ. Có nhận xét gì về \(\Delta \) và (P).
a, Áp dụng định nghĩa tính \({f’}(2)\)
b, Phương trình đường thẳng đi qua điểm M có hoành độ \({x_0}\) và hệ số góc \({f’}(2)\) là
\(y = {f’}({x_0}).(x - {x_0})\)
c, Dựa vào câu b để vẽ đường thẳng \(\Delta \)
a, Ta có: \({f’}(2) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\frac{{{x^2}}}{4} - 1}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{4(x - 2)}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - 2).(x + 2)}}{{4(x - 2)}} = \mathop {\lim }\limits_{x \to 2} \frac{{x + 2}}{4} = 1\)
b, Điểm M có tọa độ M(2;1)
Phương trình đường thẳng \(\Delta \) đi qua điểm M(2,1) có hệ số góc \({f’}(2)\) là:
y = 1.( x-2)+1= x-1
Vậy phương trình đường thẳng \(\Delta \) là: y= x-1
Cho hàm số \(y = - 3{x^3}\) có đồ thị ( C ). Tìm hệ số góc của tiếp tuyến tại điểm M (-1,3)
Hệ số góc của tiếp tuyến là đạo hàm của hàm số tại điểm -1
Ta có: \({f’}( - 1) = \mathop {\lim }\limits_{x \to - 1} \frac{{f(x) - f( - 1)}}{{x - ( - 1)}} = \mathop {\lim }\limits_{x \to - 1} \frac{{ - 3{x^3} - 3}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{ - 3.({x^3} + 1)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} ( - 3).({x^2} - x + 1) = - 9\)
Vậy hệ số góc của tiếp tuyến tại điểm M(-1,3) là -9.
Cho hàm số \(f(x) = {x^2} + 1\)có đồ thị parabol (P) và điểm M(1,2) thuộc (P). Gọi \(\Delta \)là tiếp tuyến của (P) tại M. Hãy viết phương trình \(\Delta \).
Hệ số góc của tiếp tuyến là đạo hàm của hàm số tại điểm 1
Phương trình tiếp tuyến của đường thẳng có hệ số góc k tại điểm \(M({x_0};{y_0})\) là:
\(y = k.(x - {x_0}) + {y_0}\)
Ta có: \(y'(1) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 1 - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2\)
Phương trình tiếp tuyến tại điểm M(1,2) có hệ số góc k=2 là:
y = 2.( x -1)+2=2x
Cho parabol (P) \(y = {x^2} + 2x - 3\) và điểm M thuộc (P) có hoành độ \({x_0} = - 2\)
a, Tính \({y’}( - 2)\)
b, Viết phương trình tiếp tuyến của (P) tại điểm M.
a, Sử dụng định nghĩa để tìm đạo hàm của hàm số tại điểm -2
b, Sử dụng công thức tiếp tuyến \(y = {f’}({x_0}).(x - {x_0}) + f({x_0})\)
a, Ta có: \(y'( - 2) = \mathop {\lim }\limits_{x \to - 2} \frac{{f(x) - f( - 2)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + 2x - 3 - ( - 3)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + 2x}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{x.(x + 2)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} x = - 2\)
b, Ta có: \({x_0} = - 2 \Rightarrow f({x_0}) = {( - 2)^2} + 2.( - 2) - 3 = - 3\)
Phương trình tiếp tuyến của (P) tại điểm M (-2, -3) là:
y = -2. (x + 2) -3= -2x -7.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK