Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương VII. Đạo hàm Mục 3 trang 36, 37 Toán 11 tập 2 - Cùng khám phá: Cho hàm số \(f(x) = {x^2}\). Tính đạo hàm của hàm số f(x) tại điểm \({x_0}\) bất kì...

Mục 3 trang 36, 37 Toán 11 tập 2 - Cùng khám phá: Cho hàm số \(f(x) = {x^2}\). Tính đạo hàm của hàm số f(x) tại điểm \({x_0}\) bất kì...

Sử dụng định nghia đạo hàm để tính đạo hàm. Hướng dẫn giải Hoạt động 5, Luyện tập 4 - mục 3 trang 36, 37 SGK Toán 11 tập 2 - Cùng khám phá - Bài 1. Đạo hàm. Cho hàm số \(f(x) = {x^2}\). Tính đạo hàm của hàm số f(x) tại điểm \({x_0}\) bất kì...

Câu hỏi:

Hoạt động 5

Cho hàm số \(f(x) = {x^2}\). Tính đạo hàm của hàm số f(x) tại điểm \({x_0}\) bất kì.

Hướng dẫn giải :

Sử dụng định nghia đạo hàm để tính đạo hàm

Lời giải chi tiết :

Ta có: \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{(x - {x_0}).(x + {x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} (x + {x_0}) = 2{x_0}\)


Câu hỏi:

Luyện tập 4

Chứng minh đạo hàm của hàm số \(y = \sqrt x \) trên khoảng \((0; + \infty )\) là \(y’ = \frac{1}{{2\sqrt x }}\)

Hướng dẫn giải :

Sử dụng định nghĩa tính đạo hàm của hàm số

Lời giải chi tiết :

Với mọi \({x_0} \in (0; + \infty )\) ta có :

\(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{(\sqrt x - \sqrt {{x_0}} ).(\sqrt x + \sqrt {{x_0}} )}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}\)

Suy ra \(y'({x_0}) = \frac{1}{{2\sqrt {{x_0}} }}\)

Vậy đạo hàm của hàm số \(y = \sqrt x \) trên khoảng \((0; + \infty )\) là \({y’} = \frac{1}{{2\sqrt x }}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK