Xét hàm số \(y = \sin x\)
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Bằng định nghĩa hãy tính đạo hàm của hàm số \(y = \sin x\) tại điểm \({x_0}\) bất kì.
Sử dụng định nghĩa để tính đạo hàm của hàm số
Với mọi \({x_0} \in R\) ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} - {\mathop{\rm s}\nolimits} {\rm{in}}{{\rm{x}}_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2.\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2}.\mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}} = \cos {x_0}\)
Vậy \({y’} = \cos x\)
a, Từ công thức \(\cos x = \sin (\frac{\pi }{2} - x)\) và quy tắc tính đạo hàm của hàm hợp, chứng minh rằng: \({(\cos x)’} = - \sin x\)
b, Từ các công thức \(\tan x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}{{\cos x}}\), \(\cot x = \frac{{\cos x}}{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}\) và các quy tắc tính đạo hàm của thương, chứng minh rằng: \({(\tan x)’} = \frac{1}{{{{\cos }^2}x}}\) và \({(\cot x)’} = \frac{{ - 1}}{{{{\sin }^2}x}}\)
a, Sử dụng hàm hợp và \({({\mathop{\rm s}\nolimits} {\rm{inx}})’} = \cos x\)
b, Sử dụng quy tắc \({(\frac{u}{v})’} = \frac{{{u’}.v - u.{v’}}}{{{v^2}}}\)
a, Ta có: \({(\cos x)’} = {{\rm{[}}\sin (\frac{\pi }{2} - x){\rm{]}}’} = \cos (\frac{\pi }{2} - x).{(\frac{\pi }{2} - x)’} = - \cos (\frac{\pi }{2} - x) = - {\mathop{\rm s}\nolimits} {\rm{inx}}\)
b, Ta có: \({(\tan x)’} = \frac{{{{({\mathop{\rm s}\nolimits} {\rm{inx)}}}’}.\cos x - {\mathop{\rm s}\nolimits} {\rm{inx}}.{{(\cos x)}’}}}{{{{\cos }^2}x}} = \frac{{{{\cos }^2}x + {{\sin }^2}x}}{{{{\cos }^2}x}} = \frac{1}{{{{\cos }^2}x}}\)
\({(\cot x)’} = \frac{{{{(\cos x)}’}.{\mathop{\rm s}\nolimits} {\rm{inx}} - \cos x.{{({\mathop{\rm s}\nolimits} {\rm{inx}})}’}}}{{{\mathop{\rm s}\nolimits} {\rm{i}}{{\rm{n}}^2}{\rm{x}}}} = \frac{{ - ({{\sin }^2}x + {{\cos }^2}x)}}{{{{\sin }^2}x}} = \frac{{ - 1}}{{{{\sin }^2}x}}\)
Tính đạo hàm các hàm số sau:
a, \(y = 3\cot x - \frac{{\tan x}}{2} + 1\)
b, \(y = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}{x}\)
Sử dụng các quy tắc :\({(\tan x)’} = \frac{1}{{{{\cos }^2}x}}\) ,\({(\cot x)’} = \frac{{ - 1}}{{{{\sin }^2}x}}\), \({({\mathop{\rm s}\nolimits} {\rm{inx}})’} = \cos x\)
a, \({y’} = {(3\cot x - \frac{{\tan x}}{2} + 1)’} = \frac{{ - 3}}{{{{\sin }^2}x}} - \frac{1}{{2{{\cos }^2}x}}\)
b, \({y’} = {(\frac{{{\mathop{\rm s}\nolimits} {\rm{inx}}}}{x})’} = \frac{{{{({\mathop{\rm s}\nolimits} {\rm{inx}})}’}.x - {x’}.{\mathop{\rm s}\nolimits} {\rm{inx}}}}{{{x^2}}} = \frac{{\cos x.x - {\mathop{\rm s}\nolimits} {\rm{inx}}}}{{{x^2}}}\)
Phương trình chuyển động của một con lắc lò xo quanh vị trí cân bằng O là \(x = 4.\cos 2t\), trong đó t được tính bằng giây và x được tính bằng cm. Biết rằng vận tốc của con lắc ở thời điểm t được tính bởi \(v(t) = {x’}(t)\)
a, Tính vận tốc của con lắc tại thời điểm \(t = \frac{{7\pi }}{{12}}\)
b, Tìm thời điểm đầu tiên con lắc đạt vận tốc lớn nhất
a, Tính \(v(t) = {x’}(t)\) và thay \(t = \frac{{7\pi }}{{12}}\)
b, Từ câu a tìm thời điểm con lắc đạt vận tốc lớn nhất
a, Ta có: \(v(t) = {x’}(t) = {(4.\cos 2t)’} = 4.2. - \sin 2t = - 8.\sin 2t\)
Thay \(t = \frac{{7\pi }}{{12}}\) ta được: \(v(\frac{{7\pi }}{{12}}) = - 8\sin \left( {2.\frac{{7\pi }}{{12}}} \right) = - 8.\sin \left( {\frac{{7\pi }}{6}} \right) = 4\) (cm/s)
b, Ta có: \( - 1 \le \sin 2t \le 1\)\( \Rightarrow - 8 \le - 8\sin 2t \le 8\)
Con lắc đạt vận tốc lớn nhất khi sin 2t=-1\( \Rightarrow 2t = \frac{{3\pi }}{2} \Rightarrow t = \frac{{3\pi }}{4}\)
Xét hàm số \(y = {e^x}\)
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1.\)Bằng định nghĩa tính đạo hàm của hàm số \(y = {e^x}\) tại điểm \({x_0}\) bất kì.
Sử dụng định nghĩa để tính đạo hàm
Với mọi \({x_0} \in R\) ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{({e^{x - {x_0}}} - 1){e^{{x_0}}}}}{{x - {x_0}}} = {e^{{x_0}}}\)
Vậy \({y’} = {e^x}\).
a, Từ công thức \({a^x} = {e^{x\ln a}}\) và quy tắc tính đạo hàm của hàm hợp, hãy tìm công thức tính đạo hàm của hàm số \(y = {a^x}\)
b, Từ công thức \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) và các quy tắc tính đạo hàm đã biết, hãy tìm công thức tính đạo hàm của hàm số \(y = {\log _a}x\)
a, Sử dụng công thức \({({e^x})’} = {e^x}\)
b, Sử dụng quy tắc \({(\frac{u}{v})’} = \frac{{{u’}.v - u.{v’}}}{{{v^2}}}\)
a, Ta có: \({({a^x})’} = {({e^{x\ln a}})’} = {(x.\ln a)’}.{e^{x.\ln a}} = \ln a.{e^{x.\ln a}} = \ln a.{a^x}\)
b, Ta có: \({({\log _a}x)’} = {(\frac{{\ln x}}{{\ln a}})’} = \frac{{{{(\ln x)}’}.\ln a - \ln x.{{(\ln a)}’}}}{{{{\ln }^2}a}} = \frac{{\frac{1}{x}.\ln a}}{{{{\ln }^2}a}} = \frac{1}{{x.\ln a}}\)
Tính đạo hàm các hàm số sau:
a,\(y = {4^{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}\)
b, \(y = \ln (1 + \sqrt x )\)
c, \(y = \frac{{\ln x}}{x}\)
a, Sử dụng đạo hàm hàm hợp \({y’} = {({a^u})’} = {u’}{a^u}.\ln a\)
b, Sử dụng đạo hàm hàm hợp \({y’} = {(\ln u)’} = \frac{{{u’}}}{u}\)
c, Sử dụng quy tắc \({(\frac{u}{v})’} = \frac{{{u’}.v - u.{v’}}}{{{v^2}}}\)
a, Ta có: \(\begin{array}{l}{y’} = {({4^{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}})’} = {({\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x)’}{.4^{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}.\ln 4\\ = (\cos x - \sin x){.4^{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}.\ln 4\end{array}\)
b, Ta có: \({y’} = {{\rm{[}}\ln (1 + \sqrt x ){\rm{]}}’} = \frac{{{{(1 + \sqrt x )}’}}}{{1 + \sqrt x }} = \frac{1}{{2\sqrt x .(1 + \sqrt x )}}\)
c, Ta có: \({y’} = {(\frac{{\ln x}}{x})’} = \frac{{{{(\ln x)}’}.x - {x’}.\ln x}}{{{x^2}}} = \frac{{1 - \ln x}}{{{x^2}}}\)
Nồng độ C (\(\eta g/l\)) của loại thuốc A một người uống vào sau t giờ cho bởi hàm số sau \(C(t) = 6,2.{t^4}.{e^{ - 0,5t}}\). Biết rằng nồng độ C sẽ tăng lên trong 8 giờ đầu tiên và tốc độ tăng của nồng độ C tại thời điểm t được tính bởi công thức \({C’}(t)\):
a, Tính tốc độ tăng nồng độ của thuốc A tại thời điểm \({t_0} = 1\)
b, Trong hai thời điểm \({t_0} = 1\) và \({t_1} = 5\) thời điểm nào nồng độ thuốc A tăng nhanh hơn?
a, Tính đạo hàm của hàm số C(t) và thay \({t_0} = 1\)
b, Thay \({t_0} = 1\) và \({t_1} = 5\) và so sánh
a, Ta có:
\(\begin{array}{l}{C’}(t) = {(6,2.{t^4}.{e^{ - 0,5t}})’} = 6,2.(4{t^3}.{e^{ - 0,5t}} + {t^4}.( - 0,5).{e^{ - 0,5t}})\\ = 24,8{t^3}.{e^{ - 0,5t}} - 3,1.{t^4}.{e^{ - 0,5t}}\end{array}\)
\({C’}(1) = 24,{8.1^3}.{e^{ - 0,5}} - 3,{1.1^4}.{e^{ - 0,5}} = 21,7.{e^{ - 0,5}} \approx 13,1617\)
b, \({C’}(5) = 24,{8.5^3}.{e^{ - 0,5.5}} - 3,{1.5^4}.{e^{ - 0,5.5}} \approx 95,4238\)
Vậy nồng độ tại thời điểm t=5 giây có nồng độ cao hơn.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK