Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương VII. Đạo hàm Bài 7.7 trang 45 Toán 11 tập 2 - Cùng khám phá: Tính đạo hàm các hàm số sau: a, \(y = {e^{\tan x}}\) b, \(y = {\ln ^2}(2x + 1)\)...

Bài 7.7 trang 45 Toán 11 tập 2 - Cùng khám phá: Tính đạo hàm các hàm số sau: a, \(y = {e^{\tan x}}\) b, \(y = {\ln ^2}(2x + 1)\)...

a, Sử dụng công thức \({({e^u})’} = {u’}. Trả lời - Bài 7.7 trang 45 SGK Toán 11 tập 2 - Cùng khám phá - Bài 2. Các quy tắc tính đạo hàm. Tính đạo hàm các hàm số sau...

Đề bài :

Tính đạo hàm các hàm số sau:

a, \(y = {e^{\tan x}}\)

b, \(y = {\ln ^2}(2x + 1)\)

Hướng dẫn giải :

a, Sử dụng công thức \({({e^u})’} = {u’}.{e^u}\)

b, Sử dụng công thức hàm hợp \(y = {u^2},u = \ln (2x + 1)\)

Lời giải chi tiết :

a, Ta có: \({y’} = {({e^{\tan x}})’} = {(\tan x)’}.{e^{\tan x}} = \frac{1}{{{{\cos }^2}x}}.{e^{\tan x}}\)

b, Ta có: \({y’} = {{\rm{[}}{\ln ^2}(2x + 1){\rm{]}}’} = 2\ln (2x + 1).{{\rm{[}}\ln (2x + 1){\rm{]}}’} = 2.\ln (2x + 1).\frac{2}{{2x + 1}} = \frac{{4.\ln (2x + 1)}}{{2x + 1}}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK