Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương VII. Đạo hàm Mục 1 trang 46 Toán 11 tập 2 - Cùng khám phá: Xét hàm số \(y = 3{x^4} - 2{x^2} + x\) Tính \(y’\) Tính đạo hàm của \(y’\)...

Mục 1 trang 46 Toán 11 tập 2 - Cùng khám phá: Xét hàm số \(y = 3{x^4} - 2{x^2} + x\) Tính \(y’\) Tính đạo hàm của \(y’\)...

Giải và trình bày phương pháp giải Hoạt động 1 , Luyện tập 1 - mục 1 trang 46 SGK Toán 11 tập 2 - Cùng khám phá - Bài 3. Đạo hàm cấp hai. Xét hàm số \(y = 3{x^4} - 2{x^2} + x\) Tính \(y’\) Tính đạo hàm của \(y’\) :

Câu hỏi:

Hoạt động 1

Xét hàm số \(y = 3{x^4} - 2{x^2} + x\)

a) Tính \(y’\)

b) Tính đạo hàm của \(y’\)

Hướng dẫn giải :

a) Áp dụng công thức \({\left( {{x^n}} \right)^,} = n.{x^{n - 1}}\)

b) Áp dụng công thức \({\left( {{x^n}} \right)^,} = n.{x^{n - 1}}\), \({C^’} = 0\)

Lời giải chi tiết :

a) \(y’ = \left( {3{x^4} - 2{x^2} + x} \right) = 3.4{x^3} - 2.2x + 1 = 12{x^3} - 4x + 1\)

b) Đạo hàm của \(y’\) là \(\left( {12{x^3} - 4x + 1} \right)’ = 12.3{x^2} - 4.1 + 0 = 36{x^2} - 4\)


Câu hỏi:

Luyện tập 1

Tính đạo hàm cấp hai của các hàm số sau:

a) \(y = 1 - 3\cos 3x\)

b) \(y = {e^{3{x^2} + x}}\)

Hướng dẫn giải :

+) Tính \(y’\)

+) Sau đó tính đạo hàm của \(y’\) ta thu được \(y”\)

+) Áp dụng công thức \(\left( {\cos u} \right)’ = - u’.\sin u;\,\,\,\left( {\sin u} \right)’ = u’.\cos u\); \(\left( {{e^u}} \right)’ = u’.{e^u}\)

+) \(\left( {u.v} \right)’ = u’.v + v’.u\)

Lời giải chi tiết :

a) \(y’ = \left( {1 - 3\cos 3x} \right)’ = 3.\sin 3x.\left( {3x} \right)’ = 9\sin 3x\)

\(y” = \left( {9\sin 3x} \right)’ = 9.\cos 3x.\left( {3x} \right)’ = 27\cos 3x\)

b) \(y’ = \left( {{e^{3{x^2} + x}}} \right)’ = \left( {3{x^2} + x} \right)’.{e^{3{x^2} + x}} = \left( {6x + 1} \right).{e^{3{x^2} + x}}\)

\(y” = \left( {6x + 1} \right)’.{e^{3{x^2} + x}} + \left( {6x + 1} \right).\left( {{e^{3{x^2} + x}}} \right)’ = 6.{e^{3{x^2} + x}} + {\left( {6x + 1} \right)^2}.{e^{3{x^2} + x}}\)

\( = \left( {36{x^2} + 12x + 7} \right).{e^{3{x^2} + x}}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK